-
摘要:现代空气动力学诞生一百多年来, 已经发展出众多关于升力和阻力的理论. 但是, 其远场合力理论一直停留在低速不可压流. 虽经几代人的努力, 但仍未能把它精确地推广到黏性可压缩流. 这种状况直到最近才得以突破. 本文作者及其合作者依据对远场线化Navier-Stokes方程解析解的研究, 获得了经典不可压二维定常流的Kutta-Joukowski升力定理的现代二、三维普适版这个核心结果, 从而突破了经典空气动力学基础理论延续了八九十年的一个缺口. 基于线性近似得到的简洁公式, 何以能在高度非线性的复杂流场中仍然精确成立, 这里涉及饶有兴趣的方法论问题, 很值得关注. 本文的第一个任务, 是在简要回顾普适理论基本成果的基础上, 反思其方法论特色和背后的物理机理. 尽管严格的量化升力理论已经得到航空实践的广泛检验, 但在各种出版物和媒体上仍常常出现关于升力物理来源的各种假说. 这种状况表明: 升力物理来源这个问题, 并没有在国内外众多的教科书、专著和课堂中得到彻底的澄清, 认真回答这个问题在现今仍然具有迫切的重要性. 普适理论的普遍有效性和高度简洁性使人们能用它以尽可能直接的方式为澄清升力来源提供逻辑严密的论据, 值得着重考察. 这是本文的第二个任务.Abstract:Since the birth of modern aerodynamics, various theories on lift and drag have been developed and validated extensively in aeronautical applications. However, the far-field force theory had long remained at low-speed incompressible flow. Based on the analytical solutions of the linearized Navier-Stokes equations in the steady far field, the authors and their collaborators extended the classic Kutta-Joukowski lift theorem to both two- and three-dimensional viscous and compressible flows, and thus filled the long-standing gap in theoretical aerodynamics. Why can the simple formulas based on linearized approximation still be accurately valid for highly nonlinear complex flows? This issue of great interest involves the methodological characteristics and physical mechanism behind the unified force theory and is the first task of this article. Moreover, there has been an abnormal phenomenon regarding the physical origin of lift that, despite the already mature and fully verified rigorous lift theory, various different hypotheses still keep surfacing frequently in various nonscientific publications and media. This indicates that the issue is really complicated and has not been thoroughly clarified in textbooks, monographs, and classrooms around the world. Now, the universality and high conciseness of the unified theory enable one to reach a clear answer to this issue by rigorous logical arguments in the most direct way. This is the second task of this article.
-
Key words:
- theoretical aerodynamics/
- lift/
- circulation/
- Kutta condition/
- viscous flow
-
[1] 刘罗勤. 2016. 黏性可压缩外流升阻力的统一理论基础. [博士论文]. 北京: 北京大学(Liu L Q. 2016. Unified theoretical foundations of lift and drag in viscous and compressible external flows. [PhD Thesis]. Beijing: Peking University). [2] 吴介之. 1984. 向旋涡索取升力. 国际航空, 4:2-5, 31. [3] 吴介之, 杨越. 2020. 关于旋涡定义的思考. 空气动力学学报, 38:1-8(Wu J Z, Yang Y. 2020. Thoughts on vortex definition. Acta Aerodynamica Sinica, 38:1-8). [4] Ackroyd J A D. 2015. Babinsky's demonstration: The theory of flight and its historical background. Journal of Aeronautical History, Paper No. 2015/01. [5] Baker G R, Meiron D I, Orszag S A. 1982. Generalized vortex methods for free-surface flow problems. J. Fluid Mech., 123:477-450. [6] Batchelor G K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University. [7] Bloor D. 2011. The Enigma of the Aerofoil. Chicago: University of Chicago. [8] Bryant L W, Williams D H. 1926. An investigation of the flow of air around an aerofoil of infinite span. Phil. Trans. Roy. Soc. Lond., 225:199-237. [9] Burgers J M. 1920. On the resistance of fluids and vortex motion. Pro. K. Akad. Wet. Amsterdam, 23:774-782. [10] Cole J D, Cook L P. 1986. Transonic Aerodynamics. New York: North-Holland. [11] Darrigol O. 2005. Worlds of Flow. New York: Oxford University. [12] Filon L N G. 1926. The forces on a cylinder in a stream of viscous fluid. Proc. Roy. Soc. Lond. A, 113:7-27. [13] Finn R, Gilbarg D. 1957. Asymptotic behavior and uniqueness of plane subsonic flows. Commun. Pure Appl. Math., 10:23-63. [14] Finn R, Gilbarg D. 1958. Uniqueness and the force formulas for plane subsonic flows. Trans. Am. Math. Soc., 88:375-379. [15] Frisch U, Villone B. 2014. Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. The European Physical Journal H, 39:325-351. [16] Glauert H. 1926. The Elements of Aerofoil and Airscrew Theory. Cambridge: Cambridge University. [17] Goldstein S. 1929. The forces on a solid body moving through viscous fluid. Proc. Roy. Soc. Lond. A, 123:216-225. [18] Goldstein S. 1931. The forces on a solid body moving through viscous fluid. Proc. Roy. Soc. Lond. A, 131:198-208. [19] Goldstein S. 1969. Fluid mechanics in the first half of this century. Ann. Rev. Fluid Mech., 1:1-29. [20] Helmholtz H. 1858. On integrals of the hydrodynamical equations which express vortex-motion. J. Pure Appl. Math., 55:25-55. [21] Joukowski N E. 1906. On annexed vortices. Proc. Phys. Nat. Sci. Soc., 13:12-25. [22] Kang L L, Liu L L, Su W D, Wu J Z. 2018. Minimum-domain impulse theory for unsteady aerodynamic force. Phys. Fluids, 30:016107. [23] Lagerstrom P A, Cole J D, Trilling L. 1949. Problems in the Theory of Viscous Compressible Fluids. Pasadena: California Institute of Technology. [24] Lagrange J L. 1781. Memoir on the Theory of Fluid Motion. Berlin: Nouv. Mém. Acad. [25] Lamb H. 1932. Hydrodynamics. Cambridge: Cambridge University. [26] Landau L D, Lifshitz E M. 1959. Fluid Mechanics. New York: Pergamon Press. [27] Lighthill M J. 1963. Introduction. Boundary Layer Theory. New York: Dover. [28] Lighthill M J. 1979. Waves and hydrodynamic loading//Proc. 2nd Int. Conf. Behaviour of Offshore Structures, 1:1-40. [29] Lighthill M J. 1995. Fluid Mechanics//Brown L M, Pais A, Sir B Pippard. eds. Twentieth Century Physics, Vol. II. New York: AIP Press., pp. 795-912. [30] Liu L Q. 2018. Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows. Singapore: Springer. [31] Liu L Q. 2019. The sole measure of aerodynamic forces in steady far field//IUTAM Symposium on Vortex Dynamics in Science, Nature and Technology, 24-28 June, SIO, La Jolla, USA. [32] Liu L Q, Kang L L, Wu J Z. 2017a. Zonal structure of unbounded external-flow and aerodynamics. Fluid Dyn. Res., 49:045508. [33] Liu L Q, Shi Y P, Zhu J Y, Su W D, Zou S F, Wu J Z. 2014. Longitudinal-transverse aerodynamic force in viscous compressible complex flow. J. Fluid Mech., 756:226-251. [34] Liu L Q, Wu J Z, Su W D, Kang L L. 2017b. Lift and drag in three-dimensional steady viscous and compressible flow. Phys. Fluids, 29:116105. [35] Liu L Q, Zhu J Y, Wu J Z. 2015. Lift and drag in two-dimensional steady viscous and compressible flow. J. Fluid Mech., 784:304-341. [36] Noca F, Shiels D, Jeon D. 1997. Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluids Struct., 11:345-350. [37] Panton R L. 1984. Incompressible Flow. New York: Wiley. [38] Prandtl L. 1904. On the motion of fluids with very little friction//Proceedings of III International Mathematical Congress, Heidelberg. [39] Prandtl L, Tietjens O G. 1934. Applied Hydro- and Aeromechanics. New York: McGraw-Hill. [40] Rayleigh J W S. 1878. On the irregular flight of a tennis-ball. Mess. Math., 7:14-16. [41] Regis E. 2020. The enigma of aerodynamic lift. Scientific American, 322:44-51. [42] Saffman P. 1992. Vortex Dynamics. Cambridge: Cambridge University. [43] Schlichting H, Gersten K. 2000. Boundary-Layer Theory. Berlin: Springer. [44] Taylor G I. 1926. Note on the connection between the lift on an airfoil in a wind and the circulation round it. Phil. Trans. Roy. Soc. Lond., 225:238-245. [45] Thomson W. (Lord Kelvin) 1869. On vortex motion. Trans. R. Soc. Edinb., 25:217-260. [46] Truesdell C A. 1954. The Kinematics of Vorticity. Bloomington: Indiana University. [47] von Kármán T, Burgers J M. 1935. General Aerodynamic Theory——Perfect Fluids. Berlin: Springer. [48] Wu J C. 1981. Theory for aerodynamic force and moment in viscous flows. AIAA J., 19:432-441. [49] Wu J C. 1982. Problems of General Viscous Flow//Benerjee P K, ed. Developments in Boundary Element Methods. London: Applied Science Press. [50] Wu J Z, Liu L Q, Liu T S. 2018. Fundamental theories of aerodynamic force in viscous and compressible complex flows. Prog. Aero. Sci., 99:27-63. [51] Wu J Z, Ma H Y, Zhou M D. 2006. Vorticity and Vortex Dynamics. Berlin: Springer. [52] Wu J Z, Ma H Y, Zhou M D. 2015. Vortical Flows. Berlin: Springer. [53] Wu J Z, Pan Z L, Lu X Y. 2005. Unsteady fluid dynamic force solely in terms of control-surface integral. Phys. Fluids, 17:098102. [54] Zhu J Y, Liu T S, Liu L Q, Zou S F, Wu J Z. 2015. Causal mechanisms in airfoil circulation formation. Phys. Fluids, 27:123601. [55] Zou S F, Wu J Z, Gao A K, Liu L Q, Kang L L, Shi Y P. 2019. On the concept and theory of induced drag for viscous and incompressible steady flow. Phys. Fluids, 31:065106.
点击查看大图
计量
- 文章访问数:1572
- HTML全文浏览量:252
- PDF下载量:625
- 被引次数:0