留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机振动环境下航天器结构强度设计方法综述

张玉梅,韩增尧,邹元杰

downloadPDF
张玉梅, 韩增尧, 邹元杰. 随机振动环境下航天器结构强度设计方法综述[J]. 力学进展, 2012, 42(4): 464-471. doi: 10.6052/1000-0992-12-016
引用本文: 张玉梅, 韩增尧, 邹元杰. 随机振动环境下航天器结构强度设计方法综述[J]. 力学进展, 2012, 42(4): 464-471.doi:10.6052/1000-0992-12-016
ZHANG Yumei, HAN Zengyao, ZOU Yuanjie. AN OVERVIEW OF STRUCTURAL STRENGTH DESIGN METHODS FOR SPACECRAFTS IN RANDOM VIBRATION ENVIRONMENT[J]. Advances in Mechanics, 2012, 42(4): 464-471. doi: 10.6052/1000-0992-12-016
Citation: ZHANG Yumei, HAN Zengyao, ZOU Yuanjie. AN OVERVIEW OF STRUCTURAL STRENGTH DESIGN METHODS FOR SPACECRAFTS IN RANDOM VIBRATION ENVIRONMENT[J].Advances in Mechanics, 2012, 42(4): 464-471.doi:10.6052/1000-0992-12-016

随机振动环境下航天器结构强度设计方法综述

doi:10.6052/1000-0992-12-016
基金项目:国家“973” 项目(613133) 资助
详细信息
    通讯作者:

    韩增尧

AN OVERVIEW OF STRUCTURAL STRENGTH DESIGN METHODS FOR SPACECRAFTS IN RANDOM VIBRATION ENVIRONMENT

Funds:The project was supported by the National Basic Research Program of China (613133).
More Information
    Corresponding author:HAN Zengyao
  • 摘要:随机振动环境是航天器结构强度设计重点考虑的因素之一. 目前, 在随机振动环境条件下, 航天器结构强度设计采取的方法主要为等效的准静态设计方法, 其等效原则可分为加速度响应等效、位移响应等效以及应力响应等效. 本文重点介绍了3 种等效原则的基本原理、处理方法、国内外发展现状及工程应用情况, 并在综合分析的基础上推荐使用基于位移和应力峰值响应等效的设计方法. 最后针对需进一步开展的研究工作提出了建议.

  • 1 朱凤梧, 张小达, 金枸叔. GJB 1027A-2005 运载器、上面级 和航天器试验要求.国防科学技术工业委员会. 2006. 23-30
    2 刘旭华. 结构动力可靠性研究: [博士论文]. 哈尔滨: 工程大 学固体力学院, 2006. 1-10
    3 Anderson A, Bair J, Bell D. MIL-STD-810F-2000 Test method standard for environmental engineering considerations and laboratory tests . The US Department of Defense. 2000. 320-324
    4 杨宝宁. 随机振动条件下设计载荷的确定. 航天器工程,2006, 5: 89-96
    5 Chung Y T, Krebs D J, Peebles J H. Estimation of payload random vibration loads for proper structure design. AIAA, 2001, (1667): 1-19
    6 Miles J W. On structural fatigue under random loading. J. Acoust. Soc. Am., 1957, 29: 176-176
    7 Frerbee R C, Jones J H. Comparison of miles relationship to the true mean square value of response for a single degree of freedom system. NASA, 19910073736. 1-18
    8 Suryanarayan S, Murali M R K. Improved estimation of random vibration loads in launch vehicles. AIAA, 1993, (1092): 1-29
    9 李兴超. 航天器结构随机振动响应等效为准静态载荷的方 法研究: [硕士论文]. 哈尔滨: 哈尔滨工程大学固体力学院,2008. 1-20
    10 Jaap W. Random vibrations in spacecraft structures design. USA: Springer, 2009. 162-163
    11 伍定一. 有效质量法确定合理振型数的探讨. 山西建筑,2007, 6: 34-40
    12 陈奎孚. 半功率点法估计阻尼比的误差分析. 机械强度,2002, 8: 45-50
    13 Leung K, Foist B L. Prediction of acoustically induced random vibration loads for shuttle payloads. AIAA, 1995, (1200): 1-22
    14 Chung Y T, Foist B L. Prediction of payload random vibration loads. In: 13th International Modal Analysis Conference,2004. 56-78
    15 邹元杰. 基础激励和声激励下的设计载荷估算方法. 结构动 力学会议, 哈尔滨, 2009
    16 Lee H M. Testing for random limit load versus static limit load. NASA, 19970028919. 1-41
    17 Wada B K. Historical overview of structural modeling, design loads and testing of spacecraft. AIAA, 2000, (25766):1-25
    18 Kang B S, Choi W S, Park G J. Structural optimization under equivalent static loads transformed from dynamic loads based on displacement. AIAA, 1999, (1259): 12-59
    19 Choi W S, Park G J. Structural optimization using equivalent static loads transformed from dynamic loads at all time intervals. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 191-213
    20 朱学旺, 刘青林. 多点不相关随机振动载荷的动力学等效模 拟. 电子产品可靠性与环境试验, 2007, 5: 25-41
    21 Kang B S, Shyy Y K. Design of flexible bodies in multi-body dynamics systems using equivalent static load method. AIAA, 2008, (1708): 67-86
    22 Park G J. Nonlinear dynamics response structural optimization of a joined-wing using equivalent static loads. AD, 2008A487090. 1-32
    23 Nicholas S G. Structural optimization of joined-wing beam model with bendtwist coupling using ESL. AD,200A502107. 1-43
    24 赵礼辉. ESL 法在汽车结构优化设计中的应用: [硕士论文], 上海: 交通大学车辆工程院, 2009. 1-10
    25 Lee J J, Jung U J. A preliminary study on the optimal perform design in the forging process using equivalent static loads. AIAA, 2010, (9046): 1-43
    26 肖燕武. 地震反应谱的局限性及最新发展. 水利与建筑工程 学报, 2010, 12: 45-54
    27 Kiureghian A D. A response spectrum method for random vibration analysis of MDF systems. Earthquake Engineer- ing and Structural Dynamics, 1981, 9: 187-194
    28 刘庆林. 传统反应谱CQC 法研究与进展: [博士论文]. 杭 州:浙江大学建筑工程学院, 2007. 11-25
    29 徐欣国. 桥梁抗震性能分析与评价方法初步研究, 重庆: 重 庆交通学院结构工程, 2005. 1-126
    30 杨志勇. 弹性与弹塑性动力时程分析方法中若干问题探讨: [硕士论文]. 北京: 中国建筑科学研究院结构所, 2009. 15-30
    31 林家浩. 线性随机结构的平稳随机响应. 计算力学学报,2001, 18(4): 65-73
    32 戴新进. 复合材料结构随机振动的虚拟激励法及在航空航 天领域的应用: [博士论文]. 大连: 大连理工大学工程力学,2007
    33 Hampton R W. MSC NASTRAN stress analysis of complete models subjected to random and quasi-static loads. NASA, 2000209585. 1-19
    34 Bendat J S, Piersol A G. Random Data: Analysis and Measurement Procedures. New Jersey: Wiley-NY, 2000.318-326
    35 Wirshing P H, Paez T L, Ortiz H. Random Vibrations: Theory and Applications. New Jersey: Wiley-NY, 1995.219-231
    36 Hunt F V. Stress and strain limits on the attainable velocity in mechanical vibration. J. Acoust. Soc. Amer.,1960, 9(32): 1123-1128
    37 Ungar E E. Maximum stresses in beams and plates vibrating at resonance. Trans. ASME, J. Engrg Ind., 1962,1(82B): 149-155
    38 Crandall S H. Relation between strain and velocity in resonant vibration. J. Acoust. Soc. Amer., 1962, 12(34):1960-1961
    39 Harry H, Kern D L, Piersol A G. HDBK-7005 dynamic environmental criteria. NASA, 2001. 1-302
    40 Segalman D J. An efficient method for calculating RMS von Mises stress in a random vibration environment. SANDIA, 1998, 4: 98-103
    41 Segalman D. Estimating the probability distribution of von Mises stress for structures undergoing random excitation . Journal of Vibration and Acoustics, 2000, 1(122):84-91
    42 Reese G M. A tutorial on design analysis for random vibration. DE, 2000-28753406. 1-32
    43 Quaranta G, Mantegazza P. Randomly excited structures reliability by means of the von Mises stress response. DOD, 1994: 1-34
    44 Elishakoff I. Stochasticity and safety factors: part 1. random actual stress and deterministic yield stress. Chaos Solitons & Fractals 2005, 4: 344-356
    45 de Fuente E. von Mises stresses in random vibration of linear structures. Computers and Structures, 2009, 7: 1253-1262
    46 廖海涛. 噪声载荷作用下航空薄壁壳体的随机振动响应: [硕 士论文]. 沈阳: 沈阳航空工业学院, 2007. 21-30
    47 李德葆. 应变模态分析和曲率模态分析. 见: 第15 届全国振 动与噪声控制高技术及应用会议, 北京, 2001
  • 加载中
计量
  • 文章访问数:2215
  • HTML全文浏览量:188
  • PDF下载量:2531
  • 被引次数:0
出版历程
  • 收稿日期:2012-02-24
  • 修回日期:2012-05-10
  • 刊出日期:2012-07-25

目录

    /

      返回文章
      返回

        Baidu
        map