Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation
-
摘要:空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况, 分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中, 对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主, 同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.Abstract:Cavitation is an important kind of complex multiphase flow with strong three-dimensional characteristic and high unsteadiness, which frequently occurred in a wide range of fluid machinery, marine propulsor, and hydraulic engineering and can generate the destructive behavior. Cavitation has been one of the most difficult and key problems in the area of hydrodynamics for quite a long time. In this paper, the research progress of unsteady hydrodynamics characteristics for cavitation is reviewed from the viewpoints of experimental and numerical investigations, respectively. And the existing problems in the cavitation research are also discussed. For the experimental study, the progress of the cavitation mechanism tunnel, measurement technology for cavitating flow and simultaneous sampling technique are introduced. For the numerical investigations, some of the most popular cavitation models and turbulence models are introduced by categorization, and the applications of large eddy simulation (LES) approach and validation & verification in cavitation simulations are discussed in detail. Then, mainly based on attached cavity but also other kinds of cavitation, such as cavitation cloud, cavitation erosion, and vortex cavitation, several basic but important problems are discussed. Problems discussed herein includes the evolution of attached cavity, the three dimensional structures of cavitation, the shedding mechanism of attached cavity, the unsteadiness mechanism of cavitation and its connection with the pressure fluctuations, the interaction between cavitation and vortex, the fluid-structure interaction in the cavitating flow around a flexible hydrofoil, influence of cavitation on the wake flow, and so on. Finally, prospects of the direction and trends of cavitation hydrodynamics research are discussed.
-
Key words:
- cavitation/
- hydrodynamics/
- cavitating flow/
- attached cavitation/
- cavitation model
-
[1] 曹伟, 魏英杰, 王聪, 邹振祝, 黄文虎. 2006. 超空泡技术现状、问题与应用. 力学进展, 36: 571-579(Cao W, Wei Y J, Wong C, Zou Z Z, Huang W H.2006. Current status, problems and applications of supercavitation technology. Advances in Mechanics, 36: 571-579). [2] 陈广豪. 2016. 附着型非定常空化流体动力特性与机理研究. [博士论文]. 北京: 北京理工大学(Chen G H.2016. Study on the dynamic characteristics and physical mechanism of attached unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing Institute of Technology). [3] 高远, 黄彪, 吴钦, 王国玉. 2015.绕水翼空化流动及振动特性的实验研究. 力学学报, 47: 1009-1016(Gao Y, Huang B, Wu Q, Wang G Y.2015. Experimental investigationof the vibration characteristics of hydrofoil in cavitating flow. Chinese J. Theo. Appl. Mech., 47: 1009-1016). [4] 顾巍, 何友声, 胡天群. 2001.空泡尾流场中的速度脉动与子波分析. 水动力学研究与进展(A辑), 16: 238-245(Gu W, He Y S, Hu T Q.2001. Velocity fluctuation inthe cavitating wake and its wavelet analysis. Journal of Hydrodynamics, 16: 238-245). [5] 何友声, 刘桦, 赵岗. 1997. 二维空泡流的脉动性态研究.力学学报, 29: 1-7(He Y S, Liu H, Zhao G.1997. A study onpulsation of two-dimentional cavitation flow. Acta MechanicaSinica, 29: 1-7). [6] 黄彪. 2012. 非定常空化流动机理及数值计算模型研究.[博士论文]. 北京: 北京理工大学(Huang B.2012. Physical andnumerical investigation of unsteady cavitating flows. [PhDThesis]. Beijing: Beijing Institute of Technology). [7] 计志也. 1992. 空蚀研究现状. 力学进展, 22: 58-63(Xu ZY.1992. Some recent advances in cavitation damage research. Advances in Mechanics, 22: 58-63). [8] 刘桦, 李家春, 何友声, 孟庆国. 2007.``十一五''水动力学发展规划的建议. 力学进展, 37: 142-146(LiuH, Li J C, He Y S, Meng G Q.2007. Suggestion on the researchframe programme on hydrodynamics for the eleventh five year plan. Advances in Mechanics, 37: 142-146). [9] 潘森森. 1979. 空化机理的近代研究. 力学进展, 9: 14-36(Pan S S.1979. Modern research of cavitation mechanism. Advances in Mechanics, 9: 14-36). [10] 潘森森. 1985. 空化核最新研究评述. 力学进展, 15:329-332(Pan S S.1985. Critical review on cavitation nucleiresearch. Advances in Mechanics, 15: 329-332). [11] 潘森森, 彭晓星. 2013. 空化机理. 第1版. 北京: 国防工业出版社(Pan S S, Peng X X.2013. Physical Mechanism of Cavitation. 1stedn. Beijing: National Defense Industry Press). [12] 时素果, 王国玉, 黄彪. 2011.绕栅中水翼空化流动的数值和实验研究. 力学学报, 43: 625-629(Shi S G, Wang G Y, Huang B.2011. The structure analysis aboutthe cavitation flow around the cascade hydrofoil by numerical andexperimental study. Chinese J. Theo. Appl. Mech., 43:625-629). [13] 时素果, 王国玉. 2012. 一种修正的低温流体空化流动计算模型.力学学报, 44: 269-277(Shi S G, Wang G Y.2012. A modifiedkubota cavitation model for computations of cryogenic cavitatingflows. Chinese J. Theo. Appl. Mech., 44: 269-277). [14] 谭磊, 曹树良. 2010. 基于滤波器湍流模型的水翼空化数值模拟.江苏大学学报(自然科学版), 31: 683-686(Tan L, Cao S L.2010.Numerical simulation of hydrofoil cavitation based on filter-basedmodel. Journal of Jiangsu University ( Natural Science Edition), 31: 683-686). [15] 王福军. 2016. 流体机械旋转湍流计算模型研究进展.农业机械学报, 47: 1-14(Wang F J.2016. Research progress ofcomputational model for rotating turbulent flow in fluidmachinery. Transactions of the Chinese Society forAgricultural Machinery, 47: 1-14) [16] 王一伟, 黄晨光, 杜特专, 方新, 梁乃刚. 2012.航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 44: 39-48(Wang Y W, Huang C G, Du T Z, Fang X, Liang N G.2012. Mechanismanalysis about cavitation collapse load of underwater vehicles ina vertical launching process. Chinese J. Theo. Appl. Mech.,44: 39-48). [17] 王一伟, 黄晨光, 方新, 杜特专, 于娴娴. 2013.水下回转航行体的云状空化回射流运动特征研究. 水动力学研究与进展,28: 23-29(Wang Y W, Huang C G, Fang X, Du T Z, Yu X X.2013. Characteristics of the re-entry jet in the cloud cavitatingflow over a submerged axisymmetric projectile. Chinese Journal of Hydrodynamics, 28: 23-29) [18] 王一伟, 黄晨光. 2018. 高速航行体水下发射水动力学研究进展.力学进展, 48: 201805(Wang Y W, Huang C G.2018. Research progresson hydrodynamics of high speed vehicles in the underwaterlaunching process. Advances in Mechanics, 48: 201805) [19] 徐海兵. 2004. 空化水洞总体设计以及相关的几个问题.[硕士论文]. 大连: 大连理工大学(Xu H B.2004. Collectivity designof cavitation tunnel and some relative problems. [Master Thesis].Dalian: Dalian University of Technology). [20] 阎超, 于剑, 徐晶磊, 范晶晶, 高瑞泽, 姜振华. 2011.CFD模拟方法的发展成就与展望. 力学进展, 41: 562-589(Yan C,Yu J, Xu J L, Fan J J, Gao R Z, Jiang Z H.2011. On theachievements and prospects for the methods of computational fluiddynamics. Advances in Mechanics, 41: 562-589). [21] 于娴娴, 王一伟, 黄晨光, 杜特专. 2014.轴对称航行体通气云状空化非定常特征研究. 船舶力学, 18: 499-506(YuX X, Wang Y W, Huang C G, Du T Z.2014. Unsteady characteristicsof ventilated cloud cavity around symmetrical bodies. Journalof Ship Mechanics, 18: 499-506) [22] 张博, 王国玉, 黄彪, 余志毅. 2009.云状空化非定常脱落机理的数值与实验研究. 力学学报, 41:651-659(Zhang B, Wang G Y, Huang B, Yu Z Y.2009. Numerical andexperimental studies on unsteady shedding mechanisms of cloudcavitation. Chinese J. Theo. Appl. Mech., 41:651-659). [23] 张凌新, 闻仲卿, 邵雪明. 2013. 多泡相互作用对气泡溃灭的影响.力学学报, 45: 861-867(Zhang L X, Wen Z Q, Shao X M.2013.Investigation of bubble-bubble interaction effect during thecollapse of multi-bubble system. Chinese J. Theo. Appl.Mech., 45: 861-867). [24] 张孝石. 2017. 水下航行体空化流动与压力脉动特性研究.[博士论文]. 哈尔滨: 哈尔滨工业大学(Zhang X S.2017. Study on thecavitating flows and pressure fluctuation for underwater vehicle.[PhD Thesis]. Harbin: Harbin Institute of Technology.) [25] 赵新华, 孙尧, 安伟光, 莫宏伟. 2009.超空泡航行体控制问题研究进展. 力学进展, 39: 537-545(Zhao XH, Sun Y, An W G, Mo H W.2009. Advances in supercavitationvehicle control technology. Advances in Mechanics, 39:537-545). [26] 赵宇, 王国玉, 黄彪, 胡常莉, 陈广豪, 吴钦. 2014.非定常空化流动涡旋运动及其流体动力特性. 力学学报, 46:191-200(Zhao Y, Wang G Y, Huang B, Hu C L, Chen G H, Wu Q.2014.Study of turbulent vortex and hydraulic dynamics in transientsheet/cloud cavitating flows. Chinese J. Theo. Appl. Mech.,46: 191-200). [27] 赵宇. 2016. 叶顶间隙旋涡空化数值计算模型与流动机理研究.[博士论文]. 北京: 北京理工大学(Zhao Y.2016. Numerical andphysical investigation of tip leakage vortex cavitating flows.[PhD Thesis]. Beijing: Beijing Institute of Technology). [28] Adrian R J.1994. Statistical properties of particle imagevelocimetry measurements in turbulent flow. SPIE MilestoneSeries MS, 99: 191-191. [29] Arakeri V H.1979. Cavitation inception//Proceedings of theIndian Academy of Sciences Section C: Engineering Sciences, 2: 149-177. [30] Arakeri V H.2006. Viscous effects on the position ofcavitation separation from smooth bodies. Journal of Fluid Mechanics, 68: 779-799. [31] Arndt R E A, Ippen A T.1968. Rough surface effects oncavitation inception. Journal of Basic Engineering, 90: 249-261. [32] Arndt R E A.1981. Cavitation in fluid machinery andhydraulic structures. Annual Review of Fluid Mechanics, 13: 273-328. [33] Arndt R E A, Song C, Kjeldsen M, He J, Keller A.2000.Instability of partial cavitation: a numerical/experimentalapproach//Proceedings of the 23rd Symposium on NavalHydrodynamics. [34] Arndt R E A.2002. Cavitation in vortical flows. Review of Fluid Mechanics, 34: 143-175. [35] Arndt R E A, Wosnik M, Qin Q.2006. Experimental andnumerical investigation of large scale structures in cavitatingwakes//36th AIAA Fluid Dynamics Conference and Exhibit, SanFrancisco, California. [36] Arndt R E A.2012. Some Remarks on Hydrofoil Cavitation. Journal of Hydrodynamics, 24: 305-314. [37] Astolfi J A, Dorange P, Billard J Y, Tomas I C.2000. Anexperimental investigation of cavitation inception and developmenton a two-dimensional Eppler hydrofoil. Journal of FluidsEngineering, 122: 164-173. [38] Aw M S, Paniwnyk L, Losic D.2016. The progressive role ofacoustic cavitation for non-invasive therapies, contrast imagingand blood-tumor permeability enhancement. Expert Opin. DrugDeliv., 13: 1383-1396. [39] Bachert R, Ludwig G, Stoffel B, Frobenius M, Schilling R.2003. Three-dimensional unsteady cavitation effects on a singlehydrofoil and in a radial pump--measurements and numericalsimulations//Fifth International Symposium on Cavitation. [40] Basara B, Krajnovic S, Girimaji S, Pavlovic Z.2011.Near-wall formulation of the partially averaged Navier Stokesturbulence model. AIAA Journal, 49: 2627-2636. [41] Batten P, Goldberg U, Chakravarthy S.2004. Interfacingstatistical turbulence closures with large-eddy simulation. AIAA Journal, 42: 485-492. [42] Bensow R E, Bark G.2010. Implicit LES predictions of thecavitating flow on a propeller. Journal of Fluids Engineering, 132: 041302. [43] Bie H Y, Liu J T, Hao Z R, Wu Y L.2015. Turbulencesimulations of flow past a circular cylinder based on a nonlinearpartially averaged Navier-Stokes (PANS) method. Modern Physics Letters B, 29: 13. [44] Brennen C, Acosta A.1976. The dynamic transfer functionfor a cavitating inducer. Journal of Fluids Engineering,98: 182-191. [45] Brennen C E.1995. Cavitation and Bubble Dynamics. Oxford:Oxford University Press. [46] Bustamante M C, Singh D, Cronin D S.2018. PolymericHopkinson Bar-Confinement Chamber Apparatus to Evaluate Fluid Cavitation. Exp. Mech., 58: 55-74. [47] Callenaere M, Franc J P, Michel J, Riondet M.2001. Thecavitation instability induced by the development of a re-entrantjet. Journal of Fluid Mechanics, 444: 223-256. [48] Cangioli G, Manfrida G.1997. Improvements to acoustictechniques for the detection of cavitation inception. Houille Blanche-Rev. Int., 52: 123-128. [49] Carnelli D, Karimi A, Franc J P.2011. Application ofspherical nanoindentation to determine the pressure of cavitationimpacts from pitting tests. Journal of Materials Research,27: 91-99. [50] Ceccio S L.2009. Friction drag reduction of external flowswith bubble and gas injection. Annual Review of Fluid Mechanics, 42: 183-203. [51] Chen C, Nicolet C, Yonezawa K, Farhat M, Avellan F,Tsujimoto Y.2008. One-dimensional analysis of full load drafttube surge. Journal of Fluids Engineering, 130:041106. [52] Chen G H, Wang G Y, Huang B, Hu C L, Wang Z Y, Wang J.2015. Numerical investigation of dynamics of unsteady sheet/cloudcavitating flow using a compressible fluid model. Modern Physics Letters B, 29: 1450269. [53] Chen Y, Chen X, Li J, Gong Z, Lu C.2017. Large eddysimulation and investigation on the flow structure of thecascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Engineering, 129: 1-19. [54] Cheng H Y, Long X P, Ji B, Zhu Y, Zhou J J.2016. Numericalinvestigation of unsteady cavitating turbulent flows aroundtwisted hydrofoil from the Lagrangian viewpoint. Journal of Hydrodynamics, 28: 709-712. [55] Chesnakas C J, Jessup S D.2003. Tip-vortex inducedcavitation on a ducted propulsor//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Hawaii, USA, 1: 257-267. [56] Coutier-Delgosha O, Devillers J-F, Pichon T, Vabre A, WooR, Legoupil S.2006. Internal structure and dynamics of sheetcavitation. Physics of Fluids, 18: 017103. [57] Coutier-Delgosha O, Stutz B, Vabre A, Legoupil S.2007.Analysis of cavitating flow structure by experimental andnumerical investigations. Journal of Fluid Mechanics, 578: 171-222. [58] Crespo A.1969. Sound and shock waves in liquids containingbubbles. Physics of Fluids, 12: 2274-2282. [59] Davidson L.2014. The PANS k-epsilon model in a zonalhybrid RANS-LES formulation. International Journal of Heatand Fluid Flow, 46: 112-126. [60] De M K, Hammitt F G.1982. New method for monitoring andcorrelating cavitation noise to erosion capability. Journal of Fluids Engineering, 104: 434-441. [61] Delannoy Y, Kueny J L.1990. Two phase flow approach inunsteady cavitation modelling//ASME Cavitation and Multiphase Flow Forum, 98: 153-160. [62] Dreyer M, Decaix J, Münch-Alligné C, Farhat M.2014. Mind the gap: a new insight into the tip leakage vortexusing stereo-PIV. Experiments in Fluids, 55: 1849. [63] Du T Z, Wang Y W, Liao L J, Huang C G.2016. A numericalmodel for the evolution of internal structure of cavitation cloud. Physics of Fluids, 28: 077103. [64] Ducoin A, André Astolfi J, Sigrist J-F.2012. Anexperimental analysis of fluid structure interaction on a flexiblehydrofoil in various flow regimes including cavitating flow. European Journal of Mechanics - B/Fluids, 36: 63-74. [65] Ducoin A, Deniset~ F, André A~J, Sigrist J F.2009.Numerical and experimental investigation of hydrodynamiccharacteristics of deformable hydrofoils. Journal of Shipresearch, 53: 214-226. [66] Ducoin A, Young Y L, Sigrist J F.2010. Hydroelasticresponses of a flexible hydrofoil in turbulent, cavitatingflow//ASME 2010 7th International Symposium on Fluid-StructureInteractions, Flow-Sound Interactions, and Flow-Induced Vibrationand Noise, Quebec, Canada, 3: 493-502. [67] Dular M, Bachert R, Schaad C, Stoffel B.2007.Investigation of a re-entrant jet reflection at an inclined cavityclosure line. European Journal of Mechanics - B/Fluids, 26: 688-705. [68] Dular M, Bachert R, Stoffel B, Širok B.2005.Experimental evaluation of numerical simulation of cavitating flowaround hydrofoil. European Journal of Mechanics-B/Fluids,24: 522-538. [69] Egerer C P, Schmidt S J, Hickel S, Adams N A.2016.Efficient implicit LES method for the simulation of turbulentcavitating flows. Journal of Computational Physics, 316: 453-469. [70] Foeth E J, van Doorne C W H, van Terwisga T, Wieneke B.2006. Time resolved PIV and flow visualization of 3D sheetcavitation. Experiments in Fluids, 40: 503-513. [71] Foeth E J.2008. The structure of three-dimensional sheetcavitation. [PhD Thesis]. TU Delft: Delft University of Technology. [72] Foeth E J, van Terwisga T, van Doorne C.2008. On thecollapse structure of an attached cavity on a three-dimensionalhydrofoil. Journal of Fluids Engineering, 130: 071303. [73] Franc J P, Michel J M.2005. Fundamentals of Cavitation.Netherlands: Springer Netherlands. [74] Freitag M, Klein M.2006. An improved method to assess thequality of large eddy simulations in the context of implicitfiltering. Journal of Turbulence, 7: 1-11. [75] Friedrichs J, Kosyna G.2003. Unsteady PIV flow fieldanalysis of a centrifugal pump impeller under rotatingcavitation//Fifth International Symposium on Cavitation, Osaka,Japan. [76] Ganesh H, Makiharju S A, Ceccio S L.2016. Bubbly shockpropagation as a mechanism for sheet-to-cloud transition ofpartial cavities. Journal of Fluid Mechanics, 802:37-78. [77] Gavaises M, Villa F, Koukouvinis P, Marengo M, Franc J P.2015. Visualisation and les simulation of cavitation cloudformation and collapse in an axisymmetric geometry. International Journal of Multiphase Flow, 68: 14-26. [78] Girimaji S S, Srinivasan R, Jeong E.2003. PANS turbulencemodel for seamless transition between RANS and LES: fixed-pointanalysis and preliminary results//ASME/JSME 2003 4th Joint FluidsSummer Engineering Conference, Honolulu, Hawaii, USA, 2:1901-1909. [79] Gnanaskandan A, Mahesh K.2015. A numerical method tosimulate turbulent cavitating flows. International Journal ofMultiphase Flow, 70: 22-34. [80] Gnanaskandan A, Mahesh K.2016. Numerical investigation ofnear-wake characteristics of cavitating flow over a circularcylinder. Journal of Fluid Mechanics, 790: 453-491. [81] Goncalves E, Patella R F.2009. Numerical simulation ofcavitating flows with homogeneous models. Computers & Fluids, 38: 1682-1696. [82] Gopalan S, Katz J.2000. Flow structure and modeling issuesin the closure region of attached cavitation. Physics ofFluids, 12: 895-911. [83] Gropper D, Wang L, Harvey T J.2016. Hydrodynamiclubrication of textured surfaces: A review of modeling techniquesand key findings. Tribol. Int., 94: 509-529. [84] Hart D P.1993. Cavitation and wake structure of unsteadytip vortex flows. [PhD Thesis]. California: California Instituteof Technology. [85] Hidalgo V, Luo X W, Escaler X, Ji B, Aguinaga A.2015.Implicit large eddy simulation of unsteady cloud cavitation arounda plane-convex hydrofoil. Journal of Hydrodynamics, 27: 815-823. [86] Higashi S, Yoshida Y, Tsujimoto Y.2002. Tip leakage vortexcavitation from the tip clearance of a single hydrofoil. JSME Int. J. Ser. B-Fluids Therm. Eng., 45: 662-671. [87] Hsiao C T, Ma J, Chahine G L.2017. Multiscale tow-phaseflow modeling of sheet and cloud cavitation. International Journal of Multiphase Flow, 90: 102-117. [88] Hu C L, Wang G Y, Chen G H, Huang B.2014. A modified PANSmodel for computations of unsteady turbulence cavitating flows. Sci. China-Phys. Mech. Astron., 57: 1967-1976. [89] %Huang B.2012. Physical and numerical investigation of%unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing%Institute of Technology. [90] Huang B, Wang G Y, Yu Z Y, Shi S G.2012. Detached-eddysimulation for time-dependent turbulent cavitating flows. Chinese Journal of Mechanical Engineering, 25: 484-490. [91] Huang B, Young Y L, Wang G, Shyy W.2013. Combinedexperimental and computational investigation of unsteady structureof sheet/cloud cavitation. Journal of Fluids Engineering,135: 071301. [92] Huang B, Wang G, Zhao Y.2014a. Numerical simulationunsteady cloud cavitating flow with a filter-based densitycorrection model. Journal of Hydrodynamics, 26: 26-36. [93] Huang B, Zhao Y, Wang G.2014b. Large eddy simulation ofturbulent vortex-cavitation interactions in transient sheet/cloudcavitating flows. Computers & Fluids, 92:113-124. [94] Iyer C O, Ceccio S L.2002. The influence of developedcavitation on the flow of a turbulent shear layer. Physics ofFluids, 14: 3414-3431. [95] Iyer P S, Mahesh K.2016. A numerical study of shear layercharacteristics of low-speed transverse jets. Journal ofFluid Mechanics, 790: 275-307. [96] Jeong E, Girimaji S S.2010. Partially averagedNavier-Stokes (PANS) method for turbulence simulations-flow past asquare cylinder. Journal of Fluids Engineering, 132:121203. [97] Ji B, Luo X W, Wu Y L, Xu H Y.2012. Unsteady cavitatingflow around a hydrofoil simulated using the partially-averagedNavier-Stokes model. Chin. Phys. Lett., 29: 5. [98] Ji B, Luo X, Wu Y, Peng X, Duan Y.2013. Numerical analysisof unsteady cavitating turbulent flow and shedding horse-shoevortex structure around a twisted hydrofoil. International Journal of Multiphase Flow, 51: 33-43. [99] Ji B, Luo X, Arndt R E A, Wu Y.2014. Numerical simulationof three dimensional cavitation shedding dynamics with specialemphasis on cavitation--vortex interaction. Ocean Engineering, 87: 64-77. [100] Ji B, Luo X W, Arndt R E A, Peng X, Wu Y.2015. Large EddySimulation and theoretical investigations of the transientcavitating vortical flow structure around a NACA66 hydrofoil. International Journal of Multiphase Flow, 68: 121-134. [101] Ji B, Long Y, Long X P, Qian Z D, Zhou J J.2017. LargeEddy Simulation of turbulent attached cavitating flow with specialemphasis on large scale structures in the hydrofoil wake andturbulence-cavitation interactions. Journal of Hydrodynamics, 29: 27-39. [102] Johansen S T, Wu J, Shyy W.2004. Filter-based unsteadyRANS computations. International Journal of Heat and FluidFlow, 25: 10-21. [103] Katz J.1984. Cavitation phenomena within regions of flowseparation. Journal of Fluid Mechanics, 140: 397-436. [104] Kawanami Y, Kato H, Yamaguchi H, Tanimura M, Tagaya Y.1997. Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 119: 788-794. [105] Khorrami M R, Singer B A, Berkman M E.Time-accuratesimulations and acoustic analysis of slat free shear layer. AIAA Journal, 40: 1284-1291. [106] Klein M.2005. An attempt to assess the quality of largeeddy simulations in the context of implicit filtering. Flow Turbulence & Combustion, 75: 131-147. [107] Knapp R T.1955. Recent investigations of the mechanics ofcavitation and cavitation damage. Transactions of the ASME,77: 1045-1054. [108] Krajnovic S, Larusson R, Basara B.2012. Superiority ofPANS compared to LES in predicting a rudimentary landing gear flowwith affordable meshes. International Journal of Heat and Fluid Flow, 37: 109-122. [109] Laberteaux K, Ceccio S.2001. Partial cavity flows. Part 1.Cavities forming on models without spanwise variation. Journal of Fluid Mechanics, 431: 1-41. [110] Laberteaux K R, Ceccio S L.2001. Partial cavity flows.Part 2. Cavities forming on test objects with spanwise variation. Journal of Fluid Mechanics, 431: 43-63. [111] Lamson T C, Stinebring D R, Deutsch S, Rosenberg G, TarbellJ M.1991. Real-time in vitro observation of cavitation in aprosthetic heart valve. ASAIO Journal, 37: M351-M353. [112] Le Q, Franc J P, Michel J M.1993. Partial cavities:Pressure pulse distribution around cavity closure. Journal ofFluids Engineering, 115: 249-254. [113] Leroux J B, Astolfi J A, Billard J Y.2004. An experimentalstudy of unsteady partial cavitation. Journal of FluidsEngineering, 126: 94-101. [114] Linh Van N, Jean-Philippe L, Pierre C.2015. A Bayesianfusion model for space-time reconstruction of finely resolvedvelocities in turbulent flows from low resolution measurements. Journal of Statistical Mechanics: Theory and Experiment,2015: P10008. [115] Liu J T, Liu S H, Wu Y L, Jiao L, Wang L Q, Sun Y K.2012.Numerical investigation of the hump characteristic of apump-turbine based on an improved cavitation model. Computers & Fluids, 68: 105-111. [116] Long X P, Cheng H Y, Ji B, Arndt R E A.2017. Numericalinvestigation of attached cavitation shedding dynamics around theClark-Y hydrofoil with the FBDCM and an integral method. Ocean Engineering, 137: 247-261. [117] Long X P, Cheng H Y, Ji B, Arndt R E A, Peng X X.2018.Large eddy simulation and Euler--Lagrangian coupling investigationof the transient cavitating turbulent flow around a twistedhydrofoil. International Journal of Multiphase Flow, 100: 41-56. [118] Long Y, Long X P, Ji B, Huai W X, Qian Z D.2017.Verification and validation of URANS simulations of the turbulentcavitating flow around the hydrofoil. Journal ofHydrodynamics, 29: 610-620. [119] Lu N X, Bensow R E, Bark G.2014. Large eddy simulation ofcavitation development on highly skewed propellers. Journalof Marine Science and Technology, 19: 197-214. [120] Luo X W, Ji B, Peng X X, Xu H Y, Nishi M.2012. Numericalsimulation of cavity shedding from a three-dimensional twistedhydrofoil and induced pressure fluctuation by large-eddysimulation. Journal of Fluids Engineering, 134:041202. [121] Luo X W, Ji B, Tsujimoto Y.2016. A review of cavitation inhydraulic machinery. Journal of Hydrodynamics, Ser. B, 28: 335-358. [122] Ma J, Hsiao C-T, Chahine G L.2017. A physics basedmultiscale modeling of cavitating flows. Computers & Fluids, 145: 68-84. [123] Makiharju S A, Gabillet C, Paik B G, Chang N A, Perlin M,Ceccio S L.2013. Time-resolved two-dimensional X-ray densitometryof a two-phase flow downstream of a ventilated cavity. Experiments in Fluids, 54: 1561. [124] Marquillie M, Laval J P, Dolganov R.2008. Direct numericalsimulation of a separated channel flow with a smooth profile. Journal of Turbulence, 9: N1. [125] McCormick J B W.1962. On cavitation produced by a vortextrailing from a lifting surface. Journal of BasicEngineering, 84: 369-378. [126] Meyer R S, Billet M L, Holl J W.1992. Freestream nucleiand traveling-bubble cavitation. Journal of FluidsEngineering, 114: 672-679. [127] Morch K A.2015. Cavitation inception from bubble nuclei. Interface Focus, 5: 13. [128] Niedéiedzka A, Schnerr G H, Sobieski W.2016. Review ofnumerical models of cavitating flows with the use of thehomogeneous approach. Arch. Thermodyn., 37: 71-88. [129] Noordzij L, Van Wijngaarden L.2006. Relaxation effects,caused by relative motion, on shock waves in gas-bubble/liquidmixtures. Journal of Fluid Mechanics, 66: 115-143. [130] Örley F, Trummler T, Hickel S, Mihatsch M S, Schmidt S J, Adams N A.2015. Large-eddy simulation of cavitating nozzleflow and primary jet break-up. Physics of Fluids, 27:086101. [131] Peng G Y, Yang C X, Oguma Y, Shimizui S.2016. Numericalanalysis of cavitation cloud shedding in a submerged water jet. Journal of Hydrodynamics 28: 986-993. [132] Peng X X, Ji B, Cao Y, Xu L, Zhang G, Luo X, Long X.2016.Combined experimental observation and numerical simulation of thecloud cavitation with U-type flow structures on hydrofoils. International Journal of Multiphase Flow, 79: 10-22. [133] Peng X X, Wang B, Li H, Xu L, Song M.2017. Generation ofabnormal acoustic noise: Singing of a cavitating tip vortex. Physical Review Fluids, 2: 053602. [134] Prosperetti A.2017. Vapor Bubbles. Annual Review ofFluid Mechanics, 49: 221-248. [135] Reboud J L, Stutz B, Coutier O.1998. Two phase flowstructure of cavitation: experiment and modeling of unsteadyeffects//3rd International Symposium on Cavitation. [136] Reisman G E, Wang Y C, Brennen C E.1998. Observations ofshock waves in cloud cavitation. Journal of Fluid Mechanics,355: 255-283. [137] Reuter F, Gonzalez-Avila S R, Mettin R, Ohl C D.2017. Flowfields and vortex dynamics of bubbles collapsing near a solidboundary. Physical Review Fluids, 2: 064202. [138] Roache P J.1998. Verification and validation incomputational science and engineering. United States: HermosaPublishers. [139] Roohi E, Zahiri A P, Passandideh-Fard M.2013. Numericalsimulation of cavitation around a two-dimensional hydrofoil usingVOF method and LES turbulence model. Applied MathematicalModelling, 37: 6469-6488. [140] Salvador F J, Martinez-Lopez J, Romero J V, Rosello M D.2013. Computational study of the cavitation phenomenon and itsinteraction with the turbulence developed in diesel injectornozzles by Large Eddy Simulation (LES). Mathematical andComputer Modelling, 57: 1656-1662. [141] Schnerr G H, Sauer J.2001. Physical and numerical modelingof unsteady cavitation dynamics//Proceedings of 4th internationalConference on Multi-Phase Flow, New Orleans. [142] Schnerr G H, Sezal I H, Schmidt S J.2008. Numericalinvestigation of three-dimensional cloud cavitation with specialemphasis on collapse induced shock dynamics. Physics ofFluids, 20: 040703. [143] Senocak I, Shyy W.2004. Interfacial dynamics-basedmodelling of turbulent cavitating flows, Part-1: Model developmentand steady-state computations. International Journal forNumerical Methods in Fluids, 44: 975-995. [144] Shamsborhan H, Coutier-Delgosha O, Caignaert G, Abdel NourF.2010. Experimental determination of the speed of sound incavitating flows. Experiments in Fluids, 49:1359-1373. [145] Singh S, Choi J K, Chahine G L.2013. Characterization ofcavitation fields from measured pressure signals of cavitatingjets and ultrasonic horns. Journal of Fluids Engineering,135: 091302. [146] Singhal A K, Athavale M M, Li H, Jiang Y.2002.Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124: 617. [147] Song M, Xu L, Peng X, Tang D.2017. An acoustic approach todetermine tip vortex cavitation inception for an ellipticalhydrofoil considering nuclei-seeding. International Journalof Multiphase Flow, 90: 79-87. [148] Sou A, Hosokawa S, Tomiyama A.2007. Effects of cavitationin a nozzle on liquid jet atomization. International Journalof Heat and Mass Transfer, 50: 3575-3582. [149] Sou A, Bicer B, Tomiyama A.2014. Numerical simulation ofincipient cavitation flow in a nozzle of fuel injector. Computers & Fluids, 103: 42-48. [150] Speziale C G.1997. Computing non-equilibrium turbulentflows with time-dependent RANS and VLES//Fif- teenth InternationalConference on Numerical Methods in Fluid Dynamics, Monterey, CA,USA, 490: 123-129. [151] Srinivasan V, Salazar A J, Saito K.2009. Numericalsimulation of cavitation dynamics using acavitation-induced-momentum-defect (CIMD) correction approach. Applied Mathematical Modelling, 33: 1529-1559. [152] Stern F, Wilson R V, Coleman H W, Paterson E G.2001.Comprehensive, approach to verification and validation of cfdsimulations---Part I: Methodology and procedures. Journal ofFluids Engineering, 123: 792-802. [153] Stutz B, Reboud J L.1997a. Experiments on unsteadycavitation. Experiments in fluids, 22: 191-198. [154] Stutz B, Reboud J L.1997b. Two-phase flow structure ofsheet cavitation. Physics of Fluids, 9: 3678-3686. [155] Stutz B, Reboud J L.2000. Measurements within unsteadycavitation. Experiments in Fluids, 29: 545-552. [156] Stutz B, Legoupil S.2003. X-ray measurements withinunsteady cavitation. Experiments in Fluids, 35, 130-138. [157] Travin A, Shur M, Strelets M, Spalart P.2000.Detached-eddy simulations past a circular cylinder. FlowTurbul. Combust., 63: 293-313. [158] Tsujimoto Y.2007. Stability analysis of cavitating flowsthrough inducers. Fluid Dynamics of Cavitation and CavitatingTurbopumps, 496: 191-210. [159] Wang C C, Huang B, Wang G Y, Zhang M D, Ding N.2017.Unsteady pressure fluctuation characteristics in the process ofbreakup and shedding of sheet/cloud cavitation. InternationalJournal of Heat and Mass Transfer, 114: 769-785. [160] Wang G, Senocak I, Shyy W, Ikohagi T, Cao S.2001. Dynamicsof attached turbulent cavitating flows. Progress in AerospaceSciences, 37: 551-581. [161] Wang G, Ostoja-Starzewski M.2007. Large eddy simulation ofa sheet/cloud cavitation on a NACA0015 hydrofoil. AppliedMathematical Modelling, 31: 417-447. [162] Wang Y, Qiu L, Reitz R D, Diwakar R.2014. Simulatingcavitating liquid jets using a compressible and equilibriumtwo-phase flow solver. International Journal of MultiphaseFlow, 63: 52-67. [163] Wang Y W, Huang C G, Du T Z, Wu X Q, Fang X, Liang N G, WeiY P.2012. Shedding phenomenon of ventilated partial cavitationaround an underwater projectile. Chinese Physics Letters,29: 014601. [164] Wang Z, Huang B, Wang G, Zhang M, Wang F.2015.Experimental and numerical investigation of ventilated cavitatingflow with special emphasis on gas leakage behavior and re-entrantjet dynamics. Ocean Engineering, 108: 191-201. [165] Wei Y P, Wang Y W, Fang X, Huang C G, Duan Z P.2011. Ascaled underwater launch system accomplished by stress wavepropagation technique. Chinese Physics Letters, 28:024601. [166] Westerweel J.1997. Fundamentals of digital particle imagevelocimetry. Measurement Science and Technology, 8:1379-1392. [167] Wosnik M, Arndt R, Ain Q.2006. Identification of largescale structures in the wake of cavitating hydrofoils using LESand time-resolved PIV//Proceedings of 26th Symposium on NavalHydrodynamics, Rome, Italy. [168] Wu J, Wang G, Shyy W.2005. Time-dependent turbulentcavitating flow computations with interfacial transport andfilter-based models. International Journal for NumericalMethods in Fluids, 49: 739-761. [169] Wu J Z, Ma H Y, Zhou M D.2006. Vorticity and VortexDynamics. Berlin: Springer. [170] Wu Q, Huang B, Wang G, Gao Y.2015. Experimental andnumerical investigation of hydroelastic response of a flexiblehydrofoil in cavitating flow. International Journal ofMultiphase Flow, 74: 19-33. [171] Xiao L Z, Long X P, Lyu Q, Xu M S.2014. LES investigationon cavity shedding of a Clark-Y hydrofoil under different attackangle with an integration method//IOP Conference Series:Earth and Environmental Science, 22: 052011. [172] Xing T, Stern F.2010. Factors of safety for richardsonextrapolation. Journal of Fluids Engineering, 132:061403. [173] Xing T.2015. A general framework for verification andvalidation of large eddy simulations. Journal ofHydrodynamics, 27: 163-175. [174] Ye Y, Li G.2016. Modelling of hydrodynamic cavitatingflows considering the bubble-bubble interaction. International Journal of Multiphase Flow, 84: 155-164. [175] Young Y L, Kinnas S A.2003. Numerical modeling ofsupercavitating propeller flows. Journal of Ship Research,47: 48-62. [176] Zhang L X, Zhang N, Peng X X, Wang B L, Shao X M.2015. Areview of studies of mechanism and prediction of tip vortexcavitation inception. Journal of Hydrodynamics, 27:488-495. [177] Zhang Y, Gopalan S, Katz J.1998. On the flow structure andturbulence in the closure region of attached cavitation//22thSymposium on Naval Hydrodynamics. [178] Zhang Y, Zhang Y, Qian Z, Ji B, Wu Y.2016. A review ofmicroscopic interactions between cavitation bubbles and particlesin silt-laden flow. Renewable and Sustainable EnergyReviews, 56: 303-318. [179] Zhao Y, Wang G, Huang B.2016. A cavitation model forcomputations of unsteady cavitating flows. Acta MechanicaSinica, 32: 273-283. [180] Zima P, Furst T, Sedlar M, Komarek M, HuzlikR.2016. Determination of frequencies of oscillations of cloudcavitation on a 2-D hydrofoil from high-speed camera observations.Journal of Hydrodynamics, 28: 369-378. [181] ŽnidarČiČ A, Coutier-Delgosha O, Marquillie M.2015. A new algorithm for DNS simulations of cavitating flowsusing homogeneous mixture approach//AIP Conference Proceedings,1648: 030018. [182] Zwart P J, Gerber A G, Belamri T.2004. A two-phase flowmodel for predicting cavitation dynamics//Proceedings of the 5thInternational Conference on Multiphase Flow, Yokohama, Japan.
点击查看大图
计量
- 文章访问数:3937
- HTML全文浏览量:487
- PDF下载量:1151
- 被引次数:0