-
摘要:耦合载荷分析是航天器研制过程中的一个重要环节, 能够为航天器结构设计, 地面验证试验条件制定以及批准型号发射提供重要依据, 而精确地得到试验验证的航天器动力学分析模型是开展耦合载荷分析的基础. 对于大型复杂航天器结构系统, 动力学模型的试验验证需要统筹安排初始建模、动力学试验、相关分析和模型修正等工作, 这是一项极具挑战的任务. 本文首先给出了结构动力学模型验证的基本流程, 然后重点讨论动力学试验, 相关分析与模型修正等关键技术, 最后结合工程实际的需求, 提出了今后航天器动力学模型试验验证技术研究的重点.Abstract:Coupled Load Analysis (CLA) is a key step during spacecraft design process, the result of which is the most important reference to structure design, estimation of test force/acceleration specification and the approval of the spacecraft's flight, a test verified dynamic model of the spacecraft is the base of the Coupled Load Analysis. For complex spacecraft system, model verification task is a very challenge. Firstly, a systematic model verification process is presented. And then, several critical issues, including structure dynamics test, model correlation and model updating, are discussed. Finally, according to the space engineering requirement, some emphases that need to research in the future are proposed.
-
1 Zang C, Chen G, Ewins D J. A Review of Advances in Developments in FE Model Validation, Proc. The IMACXXIV (24): A Conference & Exposition on Structural Dynamics St.Louis, Missouri, USA 2006, p. 1778-1789. 2 Ewins D J. Modal Testing II—Theory, Practice and Application. Baldock, Hertfordshire, England: Research Studies Press, Ltd., 2000. 3 俞云书. 结构模态试验分析. 北京: 宇航出版社, 2000 4 Ewins D J. Virtual modal testing. The Asia-Pacific Vibration Conference, Orchard Hotel,Singapore, 1999 5 Tinker M L. Modal Vibration Test Facilities and Methods for Space Station Modules. AIAA-95-1295,1995 6 Tinker M L. Free-suspension residual flexibility testing of space station pathfinder: comparison to fixed-base results, AIAA 1998-1791, 1998 7 Tinker M L. Hybrid residual flexibility/mass-additive method for structural dynamic testing, NASA/TM 2003-212343, 2003 8 Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control and Dynamics, 1991, 14(9): 251-259 9 Kammer D C. Effects of noise on sensor placement for onorbit modal identification of large space structures. Jour- nal of Dynamic Systems, Measurement and Control, 1992,114: 436-443 10 Papadopoulos M, Garcia E. Sensor placement methodologies for dynamic testing. AIAA Journal, 1998, 36(2): 256-263 11 Reynier M, Hisham A K. Sensor locations for updating problems. Mechanical Systems and Signal Processing,1999, 13(2): 297-314 12 Wijker J (ed.), Mechanical Vibrations in Spacecraft Design. Berlin: Springer, 2004 13 Allemang R, Brown D. A correlation coefficient for modal vector analysis. In: 1st International Modal Analysis Conference, Orlando, USA., 1982 14 Lieven N A, Ewins D J. Spatial correlation of mode shapes, the coordinatemodal assurance criterion (COMAC). In: 6th International Modal AnalysisConference, Kissimmee, USA., 1988 15 Payload Verification Requirements, NSTS 14046 Rev. E, Lyndon B. Johnson Space Center, Huston Texas; March2000 16 Coleman M, Peng C Y, Smith K S. Test verification of the cassini spacecraft dynamic model, 0-7803-3741-7/97IEEE,1997 17 Modal Survery Assessment, Ecss-E-30-11, Draft 1, Noordwijk, The Netherlands. 2003 18 Heylen W, Avitabile P. Correlation considerations —Part5, In: Proc. IMAC, 1998 19 Heylen W, Lammens S. FRAC: a consistent way of comparing frequency response functions. In: Proc. Identication in Engineering Systems, Proceedings of the Conference held at Swansea., 1996 20 Nefske D J, Sung S H. Correlation of a coarse-mesh FE model using structural system identification and a frequency response assurance criterion. In: Proc. IMAC,597-602, 1996 21 Pascual R, Razeto C G J M. A frequency domain correlation technique for model correlation and updating. In: Proc. IMAC, 1997 587-592 22 Grafe H. Model updating of large structural dynamics models using measured response functions. London: University of London, 1998 23 Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Canada: Kluer Academic Publishers, 1995 24 张德文, 魏阜旋. 模型修正与破损诊断, 第一版. 北京: 科学 出版社, 1999 25 Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound and Vibra- tion, 1993, 163(2): 347-375 26 Mottershead J E, Friswell M I. Model updting. Special Issue: Mech. Syst. Signal Process, 1998, 12(1) 27 Imregun M, Visser W J. A review of model updating tchniques. The Shock and Vibration Digest, 1991, 13: 9-20 28 Hemez F M. Can model updating tell the truth? In: Proc. the 16th SEM International Modal Analysis Conference Santa Barbara, California, 1998. 1-7 29 Natke H G. Problem of model updating procedures: a perspective resumption. Mechanical Systems and Signal Processing, 1998, 12(1): 65-74 30 李辉, 丁桦. 结构动力模型修正方法研究进展. 力学进展,2005, 35(2): 170-180 31 Baruch M. Optimization procedure to correct stiffness and flexiblity matrices using vibration data. AIAA Journal,1978, 16(11): 1208-1210 32 Baruch M. Method of reference basis for identification of linear dynamic strucutres. In: 23rd Structures, Structural Dynamics and Materials Conference,Part 2, New Orleans, Louisiana, 1982 33 Berman A. Comment on optimal weighted orthogonalization of measured modes. AIAA Journal, 1979, 17(8): 927-928. 34 Berman A. Mass matrix correction using an imcomplete set of measured modes. AIAA Journal, 1979, 17(10) 35 Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21(8): 1168-1173 36 zhang D W, Zhang L. The matrix transform method for modification of structural dynamic analytic model. AIAA Journal, 1992, 30(5) 37 Kabe A M. Stiffness matrix adjustment using for structure model. AIAA Journal, 1985, 23(9): 1431-1436 38 Smith S W, Beattie C A. Secant-method adjustment for structural models. AIAA Journal, 1991, 29(1): 538-543 39 Kenigsbuch R, Halevi Y. Model updating in structural dynamics: a generalized reference basis approach. Me- chanical Systems and Signal Processing, 1998, 12: 75-90 40 Halevi Y, Bucher I. Model updating via weighted reference basis with connectivity constraints. Journal of Sound and Vibration, 2003, 265(3): 561-581 41 Caesar B. Updating and identification of dynamic mathematical models. In: Proc. 4th International Modal Analysis Conference Los Angeles, 1986, 453-459 42 Caesar B. Updating system matrices using modal test data. In: Proc. 5th International Modal Analysis Conference London, 1987. 453-459 43 Link M,Weiland M, Barragan J M. Direct physical matrix identification as compared to phase resonance testing: an assessment based on practical application. In: Proc. 5th International Modal Analysis Conference London, England,1987 44 Minas C, Inman D J. Correcting finite element models with measured modal results using eigenstructure assignment meods. In: Proc. 6th International Modal Analysis Conference Orlando, Florida, 1988. 583-587 45 Minas C, Inman D J. Matching finite element models to modal data. Journal of Vibration and Acoustics, 1990,112(1): 84-92 46 Zimmerman D C, Widengren M. Correcting finite models using a symmetric eigenstructure assignment technique. AIAA Journal, 1990, 28(9): 1670-1676 47 丁继锋, 韩增尧, 马兴瑞. 大型复杂航天器结构有限元模型 的验证策略研究. 宇航学报, 2010, 31(2): 547-555 48 Fox F L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. AIAA Journal, 1968, 6(12): 2426-2429 49 Kuo C P, Wada B K. Nonlinear sensitivity coeficients and corrections in system identification, AIAA Journal, 1987,25(11): 1463-1468 50 Gordis J H. Artificial boundary conditions for model updating and damage detection. Mechanical Systems and Signal Processing, 1999, 13(3): 437-448 51 DeGregory C P. Finite elememnt model updating and damage detection using artificial boundary conditions. Monterey, California, Naval Postgruduate School, 1999 52 Fernandez R S. Artificial boundary conditions in sensitivity based finite element model updating and structural damage detection. California, Naval Postgraduate School,2005 53 D’Ambrogio W, Fregoient A. The use of antiresonances for robust model updating. Journal of Sound and Vibration,2000, 23(2): 227-242 54 Jones K W. Finite element model updating using antiresonant frequencies. Ohio, Air Force Insitute of Technology,2000 55 D’Ambrogio W, Fregolent A. Results obtained by minimising natural frequency and antiresonance errors of a beam model. Mechanical Systems and Signal Processing,2003, 17(1): 29-37 56 Thonon C, Golinval J C. Results obtained by minimising natural frequency and mac-value errors of a beam model. Mechanical Systems and Signal Processing, 2003, 17(1):65-72 57 费庆国, 张令弥, 李爱群, 等. 基于不同残差的动态有限元模 型修正的比较研究. 振动与冲击, 2005, 24(4): 24-27 58 Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structures. AIAA Journal, 1974, 12(2):185-190 59 Hemez F M, Doebling S. A validation of bayesian finite element model updating for linear dynamics. In: Proc. the17th International Model Analysis Conference Kissimmee, Florida, 1999 60 Hua H. On a stctistical optimization method used in finite element model updating. Journal of Sound and Vibration,2000, 231(4): 1071-1078 61 华宏星, 傅志方. 有限元模型修正中的Bayes 方法的几点讨 论. 振动工程学报, 1998, 11(1): 110-115 62 Lin R M, Ewins D J. Model updating using FRF data. In: Proc. 15th International Seminar on Modal Analysis,1990 63 Lin R M, Ewins D J. Analytical model improvement using frequency reponse functions. Mechanical Systems and Signal Processing, 1994, 8(4): 437-458 64 Imregun M, Visser W J, Ewins D J. Finite element model updating using frequency response function data-1. theory and initial investigation. Mechanical Systems and Sig- nal Processing, 1995, 9: 187-202 65 Visser W J, Imregun M. A Technique to update finite element models using frequency response data. In: Proc. the9th International Modal Analysis Conference Florence,1991-09-10-12. Kissimmee: Union College, 1991. 462-468 66 Imregun M, Visser W J, Ewing M S. Finite element model updating using frequency response function data-2 case study on a medium-size finite element model. Mechanical Systems and Signal Processing, 1995, 9(2): 203-213 67 Frizten C P, Zhu S. Updating of finite element models bu means of measured information. Computers and Struc- tures, 1991, 40(2): 475-486 68 Link M, Zhang L. Experience with different procedures for updating structural parameters of analytical models using test data. In: Proc. the 10th Internatinal Modal analysis Conference Sandiego,California, 730-738, 1992 69 Hemez F M, Browm G W. Improving structural dynamics models by correlation simulated to measured frequency response functions, A98-25080, 1998 70 Chang K J, Park Y P. Substructure Model Updating Techniques Using Component Receptance Sensitivity (CRS). 71 Kwon K S, Lin R M. Frequency selection method for FRFbased model updating. Journal of Sound and Vibration,2004, 278(1-2): 285-306 72 Modak S V, Kundra T K, Nakra B C. Comparative study of model updating methods using simulated experimental data. Computers and Structures, 2002, 80: 437-447 73 Kodiyalam S, Kao P J, Wang G. Analysis and test correlation of spacecraft strucutres using dynamic parameter sensitivities. AIAA 1994-24025, 1994 74 Beliveau J G, Vigneron, Soucy, et al. Modal parameter estimation from base excitation. Journal of Sound and Vibration, 1986, 107: 435-449 75 Sinapius J M. Tuning of normal modes by multi-axial base excitation. Mechanical Systems and Signal Processing,1999, 13(6): 911-924 76 Thomas G C, David R M, Arlo R N. A comparison of fixed-base and driven-base modal testing of an electronics package. In: Proc. the 7th International Modal Analysis conference (IMAC), 672-679, 1989 77 Mark D. Correlation of FE models of base excitation tests. In: Proc. the 16th International Modal Analysis Conference,959-964, 1998 78 Lin R M, Zhu J. Finite element model updating using vibration test data under base excitation, Journal of Sound and Vibration, 2007, 303: 596-613 79 Mares C, Mottershead J E, Friswell M I. On the development of a stochastic approach for the validation of spacecraft structural dynamic models. In: Proc. the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, France, 2002 80 Mares C, Mottershead J E, Friswell M I. Stochastic model updating: part 1——theory and simulated example. Me- chanical Systems and Signal Processing, 2006, 20: 1674-1695 81 Mottershead J E, Mares C, James S, et al. Stochastic model updating: part II——theory and simulated example. Mechanical Systems and Signal Processing, 2006, 20:2171-2185 82 Calvi A. Uncertainty-based loads analysis for spacecraft: Finite element model validation and dynamic responses. Computers and Structures, 2005, 83: 1103-1112 83 邱吉宝, 王建民. 用测量模态参数修改数学模型和复杂结构 动力学建模技术. 见: 全国模态分析与试验会议论文集, 1991 84 邱吉宝, 王建民, 捆绑式运载火箭动力学分析. 见: 柔性结构 的振动控制学术讨论会论文集. 北京, 1994: 173-178 85 邱吉宝, 王建民. 用试验识别模态修改数学模型方法与复杂 结构建模技术. 振动与冲击, 1994, 3: 8-14 86 邱吉宝, 张正平, 向树红. 计算结构动力学. 合肥: 中国科技 大学出版社, 2009
点击查看大图
计量
- 文章访问数:1788
- HTML全文浏览量:113
- PDF下载量:1409
- 被引次数:0