-
摘要:本文综述了关于激波和湍流相互作用数值模拟的近期研究进展, 主要包括激波和均匀各向同性湍流、激波和湍流边界层、激波和射流以及激波和尾迹的相互作用. 激波和湍流相互作用特性受到诸多因素的影响,如激波的强度、位置、形状和流动边界以及来流的湍流状态和可压缩性等. 激波和湍流的相互作用会引起流场结构、激波特性和湍流统计特性的显著变化. 最后简要讨论了激波和湍流相互作用数值研究需要关注的一些问题.Abstract:We provide an overview of recent progresses in numerical simulations of the shock wave/turbulence interactions, including the interactions of shock wave with homogeneous and isotropic turbulence, turbulent boundary layers, turbulent jets and wakes. The characteristics of the interaction depend on a variety of factors, such as the strength, location and shape of the shock wave, the boundary conditions, as well as the state of turbulence and the compressibility of the incoming ow. The interaction substantially results in considerable changes in the ow structures, the features of shock wave and the turbulent statistical properties. Finally, we discuss some issues in the numerical simulation of shock wave/turbulence interactions.
-
Key words:
- shock wave/
- compressible turbulence/
- numerical simulation
-
1 Andreopoulos Y, Agui J H, Briassulis G. Shock wave turbulence interactions. Annu Rev Fluid Mech, 2000, 32:309-345 2 Jiang J S, Shu C W. Efficient implementation of weighted ENO scheme. J Comput Phys, 1996, 126: 202-228 3 Lele S K. Compact finite difference schemes with spectrallike resolution. J Comput Phys, 1992, 103: 16-42 4 Hill D J, Pullin D I. Hybrid tunedcenter differenceWENO method for large eddy simulations in the presence of strong shocks. J Comput Phys, 2004, 194: 435-450 5 Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys, 2002,178: 81-117 6 Ren Y X, Liu M, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J Comput Phys, 2003, 192: 365-386 7 Wang J, Wang L P, Xiao Z, et al. A hybrid numerical simulation of isotropic compressible turbulence. J Com- put Phys., 2010, 229: 5257-5279 8 Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. J Fluid Mech, 2006, 557: 29-61 9 Kawai S, Shankar S K, Lele S K. Assessment of localized artificial diffusivity scheme for largeeddy simulation of compressible turbulent flows. J Comput Phys, 2010,229: 1739-1762 10 Ducros F, Ferrand V, Nicoud F, et al. Large-eddy simulation of the shock/turbulence interaction. J Comput Phys,1999, 152: 517-549 11 G′enin F, Menon S. Studies of shock/turbulent shear layer interaction using large-eddy simulation. Comput Fluids,2010, 39: 80-819 12 Pirozzoli S. Numerical methods for high-speed flows. Annu Rev Fluid Mech, 2011, 43: 163-194 13 Lele S K. Compressibility effects on turbulence. Annu Rev Fluid Mech, 1994, 26: 211-254 14 Lele S K, Larsson J. Shock-turbulence interaction: what we know and what we can learn from peta-scale simulations. J Phys: Conf Ser, 2009, 180: 012032 15 Lee S, Lele S K, Moin P. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J Fluid Mech, 1993, 251: 533-562 16 Lee S, Lele S K, Moin P. Interaction of isotropic turbulence with shock waves: effect of shock strength. J Fluid Mech, 1997, 340: 225-247 17 Mahesh K, Lele S K, Moin P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J Fluid Mech, 1997, 334: 353-379 18 Larsson J, Lele S K. Direct numerical simulation of canonical shock/turbulence interaction. Phys Fluids, 2009, 21:126101 19 Garnier E, Sagaut P, Deville M. Large eddy simulation of shock/homogeneous turbulence interaction. Comput Flu- ids, 2002, 31: 245-268 20 Dolling D S. Fifty years of shock wave/boundary layer interaction research: what next? AIAA J, 2001, 39(8):1517-1531 21 Liou W W, Huang G, Shi T H. Turbulence model assessment for shock wave/turbulent boundary layer interaction in transonic and supersonic flows. Comput Fluids, 2000,29: 275-299 22 Gerolymos G A, Sauret E, Vallet I. Oblique shock wave/boundary layer interaction using near wall Reynolds stress models. AIAA J, 2004, 42(6): 1089-1110 23 Knight D, Yan H, Panaras A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog Aerosp Sci, 2003, 39: 121-184 24 Pami`es M, Weiss P ′E, Garnier E, et al. Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys Fluids, 2009,21: 045103 25 Keating A, Piomelli U, Balaras E, et al. A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys Fluids, 2004, 16(12): 4696-4712 26 Urbin G, Knight, D. Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J, 2001, 39(7): 1288-1295 27 Xu S, Martin M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys Fluids, 2004, 16(7): 2623-2639 28 Pirozzoli S, Bernardini M, Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J Fluid Mech, 2008, 613: 205-231 29 Garnier E, Sagaut P, Deville M. Large eddy simulation of shock/boundarylayer interaction. AIAA J, 2002, 40(10):1935-1944 30 Teramoto S. Large-eddy simulation of transitional boundary layer with impinging shock wave. AIAA J, 2005,43(11): 2354-2363 31 Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2:25. Phys Fluids, 2006, 18: 065113 32 Touber E, Sandham N D. Large-eddy simulation of lowfrequency unsteadiness in a turbulent shock-induced separation bubble. Theor Comput Fluid Dyn, 2009, 23: 79-107 33 Priebe S, Wu M Martin M P. Direct numerical simulation of a reflected-shock-wave/turbulent boundarylayer interaction. AIAA J, 2009, 47(5): 1173-1185 34 Pirozzoli S, Bernardini M, Grasso F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J Fluid Mech, 2010,657: 361-393 35 Bernardini M, Pirozzoli S, Grasso F. The wall pressure signature of transonic shock/boundary layer interaction. J Fluid Mech, 2011 671: 288-312 36 Adams N A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ= 1 685. J Fluid Mech, 2000, 420: 47-83 37 Loginov M S, Adams N A, Zheltovodov A A. Large-eddy simulation of shock wave/turbulent boundary layer interaction. J Fluid Mech, 2006, 565: 135-169 38 von Kaenel R, Kleiser L, Adams N A, et al. Large eddy simulation of shock turbulence interaction. AIAA J, 2004,42(12): 2516-2528 39 Wu M, Martin M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J, 2007, 45(4): 879-889 40 Wu M, Martin M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J Fluid Mech, 2008, 594:71-83 41 李新亮, 傅德薰, 马延文, 等. 压缩折角激波-湍流边界层干扰 直接数值模拟. 中国科学: 物理学 力学 天文学, 2010, 40:791-799 42 Sandham N D, Yao Y F, Lawal A A. Large-eddy simulation of transonic turbulent flow over a bump. Int J Heat & Fluid Flow, 2003, 24: 584-595 43 Wollblad C, Davidson L, Eriksson L E. Large eddy simulation of transonic flow with shock wave/turbulent boundary layer interaction. AIAA J, 2006, 44(10): 2340-2353 44 Chen L W, Xu C Y, Lu X Y. Numerical investigation of the compressible flow past an airfoil. J Fluid Mech, 2010,643: 97-126 45 Krishnan L, Sandham N D, Steelant J. Shock wave/boundary layer interactions in a model scramjet intake. AIAA J, 2009, 47(7): 1680-1691 46 Chauvet N, Deck S, Jacquin L. Numerical study of mixing enhancement in a supersonic round jet. AIAA J, 2007,45(7): 1675-1687 47 Berglund M, Fureby M. LES of supersonic combustion in a scramjet engine model. Proc Combust Inst, 2007, 31:2497-2504 48 Seiner J M, Dash S M, Kenzakowski, D C. Historical survey on enhanced mixing in scramjet engines. J Propul Power, 2001, 17(6): 1273-1286 49 Gruber M R, Nejad A S, Chen T H, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream. J Propul Power, 1995, 11(2): 315-323 50 Shang J S. Plasma injection for hypersonic blunt-body darg reduction. AIAA J, 2002, 40(6): 1178-1186 51 Fujita M. Axisymmetric oscillations of an opposing jet from a hemispherical nose. AIAA J, 1995, 33(10): 1850-1856 52 Chen L W, Wang G L, Lu X Y. Numberical investigation of a jet from a blunt body opposing a supersonic flow. J Fluid Mech, 2011, 684: 85-110 53 Chauvet N, Deck S, Jacquin L. Shock patterns in a slightly under expanded sonic jet controlled by radial injections. Phys Fluids, 2007, 19: 048104 54 Panda J. An experimental investigation of screech noise generation. J Fluid Mech, 1999, 378: 71-96 55 Tam C K W. Supersonic jet noise. Annu Rev Fluid Mech,1995, 27: 17-43 56 Tam C K W. Jet noise: since 1952. Theoret Comput Fluid Dynamics, 1998, 10: 393-405 57 Raman G. Supersonic jet screech: half-century from powell to the present. J Sound Vibration, 1999, 225(3): 543-571 58 Li X D, Gao J H. Numerical simulation of the three dimensional screech phenomenon from a circular jet. Phys Fluids, 2008, 20:035101 59 Krothapalli A, Rajkuperan E, Alvi F, et al. Flow field and noise characteristics of a supersonic impinging jet. J Fluid Mech, 1999, 392: 155-181 60 Dauptain A, Cuenot B, Gicquel L Y M. Large eddy simulation of stable supersonic jet impinging on flat plate. AIAA J, 2010, 48(10): 2325-2338 61 G′enin F, Menon S. Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J, 2010, 48(3):526-539 62 Wang G L, Lu X Y. Effects of the jet-to-crossflow momentum ratio on a sonic jet into a supersonic crossflow. Theor Appl Mech Lett, 2011, 1(1): 012005 63 Kawai S, Lele S K. Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J, 2010, 48(9): 2063-2083 64 G′enin F. Menon S. Dynamics of sonic jet injection into supersonic crossflow. J Turbul, 2010, 11(4): 1-30 65 Gruber M R, Nejad A S, Chen T H, et al. Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J Propul Power, 2000, 16(3): 449-457 66 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究: [博士论文]. 长沙: 国防科学技术大学, 2008. 1-184 67 Tomioka S, Jacobsen L S, Schetz J A. Sonic injection from diamond-shaped orifices into a supersonic crossflow. J Propul Power, 2003, 19(1): 104-114 68 Murugappan S, Gutmark E, Carter C, et al. Transverse supersonic controlled swirling jet in a supersonic cross stream. AIAA J, 2006, 44(2): 290-300 69 Kouchi T, Sasaya K, Watanabe J, et al. Penetration characteristics of pulsed injection into supersonic crossflow. AIAA paper, 2010-6645, 2010 70 Beresh S J, Henfling J F, Erven R J, et al. Turbulent characteristics of a transverse supersonic jet in a subsonic compressible crossflow. AIAA J, 2005, 43(11): 2385-2394 71 Beresh S J, Heineck J T, Walker S M. Planar velocimetry of jet/fin interaction on a full-scale flight vehicle configuration. AIAA J, 2007, 45(8): 1827-1840 72 Shah S B H. 超声速流中反向和横向射流及静止流中射流 的数值研究: [博士论文]. 合肥: 中国科学技术大学, 2010.1-166 73 Shah S B H, Lu X Y. Computational study of drag reduction at various freestream flows using a counterflow jet from a hemispherical cylinder. Engin Appl Comput Fluid Mech, 2010, 4(1): 150-163 74 陈立为. 具有激波和湍流旋涡分离的可压缩绕流数值研究: [博士论文]. 合肥: 中国科学技术大学, 2010. 1-157 75 许常悦. 圆柱可压缩绕流及其流动控制的大涡模拟研究: [博 士论文]. 合肥: 中国科学技术大学, 2009. 1-129 76 Botta N. The inviscid transonic flow about a cylinder. J Fluid Mech, 1995, 301: 225-250 77 Xu C Y, Chen L W, Lu X Y. Effect of mach number on transonic flow past a circular cylinder. Chin Sci Bull,2009, 54: 1886-1893 78 Xu C Y, Chen L W, Lu X Y. Numerical simulation of shock wave and turbulence interaction over a circular cylinder. Mod Phys Lett B, 2009, 23: 233-236. 79 Xu C Y, Chen L W, Lu X Y. Large-eddy simulation of the compressible flow past a wavy cylinder. J Fluid Mech,2010, 665: 238-273 80 Yun G, Choi H. Sound characteristics from turbulent flow over a sphere. AIAA paper, 2004-2916, 2004 81 Simon F, Deck S, Guillen P, et al. Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J Fluid Mech, 2007, 591: 215-253 82 Sandberg R D, Fasel H F. Numerical investigation of transitional supersonic axisymmetric wakes. J Fluid Mech,2006, 563: 1-41
点击查看大图
计量
- 文章访问数:2311
- HTML全文浏览量:136
- PDF下载量:1616
- 被引次数:0