-
摘要:机械敏感性离子通道在多种生理活动中起着极其重要的作用. 至今, 学者对这类通道的研究分析已经长达20 多年. 在实验方面, 大电导率和小电导率机械敏感性离子通道晶体结构的确定, 使人们对机械敏感性离子通道的建模和模拟分析成为可能, 并对这类通道的动力学机理的了解大大深入. 在对离子通道理论研究的过程中, 多种模拟方法和计算手段都展示了各自的优越性和针对性, 这为我们提供了从不同方面认识离子通道的可能性, 但他们也存在着自身的局限性. 特别是, 在众多针对离子通道的理论分析技术当中, 分子动力学模拟的方法尤为突出. 这一技术的出现, 为我们提供了对离子通道结构功能关系以及动力学特性更加全面与细节的描述, 这些都是其他很多技术方法所不能达到的. 另外, 分子动力学模拟又包括多种方法, 不同方法的使用使得我们能从不同切入点研究离子通道不同的特性. 因此在本文中, 我们着眼于对机械敏感性离子通道的计算分析, 特别是分子动力学模拟的应用. 通过对分子动力学模拟的介绍, 我们探讨了机械敏感性离子通道在构象、磷脂环境、机械刺激、电压依赖以及门控开放等方面的动力学机制. 同时对不同模拟技术优劣性的比较将会为我们日后的探索提供更好的研究方法. 最后, 我们也概括了国内近年来在离子通道理论研究方面取得的重大突破和突出成果, 为我们日后深入研究机械敏感性离子通道提供新的思路与启发.Abstract:Mechanosensitive channels play an important role in various physiological processes. The research on Mechanosensitive channels has been conducted more than two decades by now. In the experimental aspect, the determination of crystal structures of mechanosensitive channels of large and small conductance makes it possible to develop molecular modeling and simulation investigations on MS channels, which gives us a significantly deeper insight into mechanism of mechanosensitive channels. During theoretical studies on ion channels, different simulation methods and calculation skills display their superiorities as well as specific performances, which offer us different viewpoints to analyze membrane channels; however, they also have their own limitations. Particularly, among many ion channel analysis technologies, molecular dynamic simulation plays an outstanding role. The emergence of molecular dynamic simulation presents a more comprehensive and detailed description of the structural and functional relationship and dynamic mechanism of MS channels, which we can not achieve via many other technologies. On the other hand, molecular dynamic simulation consists of several methods, and different methods offer us different paths to study MS channels. That’s why in this review, we focus on the computational aspect of mechanosensitive channels analysis, with particular emphasis laid on molecular dynamic simulations. In the context of molecular dynamic simulation, we discuss the dynamic mechanism of MS channels, including structure, lipid environment, mechanical stimulation, voltage dependence and gating configuration. Meanwhile comparisons of the advantages and disadvantages of different simulation technologies will provide us better tools of research in the future. Finally, we also sum up the domestic breakthrough and great achievements in ion channels research, and all of these will definitely provide us new thoughts and inspirations to study MS channels.
-
1 Katz B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol, 1950,111: 261-282 2 Loewenstein W R. The generation of electric activity in a nerve ending. Ann. NY Acad. Sci, 1959, 81: 367-387 3 Detweiler P B. Sensory transduction. In: Patton H D, Fuchs A F, Hille B, et al, eds. Textbook of Physiology, Excitable Cells and Neurophysiology. Philadelphia: Saunders Company, 1989. 98-129 4 Garcia-Añovernos J, Corey D P. The molecules of mechanosensation. Annu. Rev. Neurosci, 1997, 20: 567-594 5 Sachs F, Morris C E. Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol,1998, 132: 1-77 6 Hamill O P, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol. Rev, 2001, 81: 685-740 7 Gillespie P G, Walker R G. Molecular basis of mechanotransduction. Nature, 2001, 413: 194-202 8 Corey D. Sensory transduction in the ear. J. Cell Sci,2003a, 116: 1-3 9 Corey D P. New TRP channels in hearing and mechanosensation. Neuron, 2003b, 39: 585-588 10 Sachs F. Mechanical transduction in biological systems. Crit. Rev. Biomed. Eng, 1988, 16: 141-169 11 Morris C E. Mechanosensitive ion channels. J. Membr. Biol, 1990, 113: 93-107 12 Martinac B. Mechanosensitive ion channels: biophysics and physiology. In: Jackson M B, ed. Thermodynamics of Membrane Receptors and Channels. Boca Raton: CRC Press, 1993. 327-351 13 Hamill O P, Marty A D, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. P ugers Arch. Eur. J. Physiol, 1981, 391: 85-100 14 Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J. Physiol, 1984, 352: 685-701 15 Brehm P, Kullberg R, Moody-Corbet F. Properties of nonjunctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol, 1984, 350: 631-648 16 Hamill O P. Potassium and chloride channels in red blood cells. In: Sakmann B, Neher E, eds. Single-Channel Recording. New York: Plenum, 1983. 451-471 17 Martinac B, Buechner M, Delcour A, et al. Pressuresensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA, 1987, 84: 2297-2301 18 Delcour A H, Martinac B, Adler J, et al. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J, 1989, 56: 631-636 19 Berrier C, Coulombe A, Houssin C, et al. A patchclamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett, 1989, 259: 27-32 20 Sukharev S I, Blount P, Martinac B, et al. A large mechanosensitive channel in E. coli encoded by mscL alone. Nature, 1994, 368: 265-268 21 Levina N, Totemeyer S, Stokes N R, et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J, 1999,18: 1730-1737 22 Chang G, Spencer R H, Lee A T, et al. Structure of the MscL homologue from Mycobacterium tuberculosis, a gated mechanosensitive ion channel. Science, 1998, 282:2220-2226 23 Kloda A, Martinac B. Molecular identification of a mechanosensitive ion channel in Archaea. Biophys J2001a, 80: 229-240 24 Kloda A, Martinac B. Structural and functional similarities and differences between MscMJLR and MscMJ, two homologous MS channels of M. jannashii. EMBO J,2001b, 20: 1888-1896 25 Betanzos M, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol, 2002, 9: 704-710 26 Perozo E, Kloda A, Marien C D, et al. Structure of MscL in the open state and the molecular mechanism of gating in mechanosensitive channels. Nature, 2002a, 418: 942-948 27 Perozo E, Kloda A, Cortes D M, et al. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol, 2002, 9: 696-703 28 Bass R B, Strop P, Barclay M, et al. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 2002, 298: 1582-1587 29 Tavernarakis N and Driscoll M. Molecular modelling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol, 1997, 59: 659-689 30 Colbert H A, Smith T L, Bargmann C I. Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation and olfactory adapation in Caenorhabditis elegans. J. Neurosci, 1997, 17: 8259-8269 31 Alvarez de la Rosa D, Canessa C M, Fyfe G K, et al. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol, 2000, 62: 573-594 32 Liedtke W, Choe Y, Marti-Renom M A, et al. Vanilloid receptor-related osmotically activated channel (VROAC), a candidate vertebrate osmoreceptor. Cell, 2000,103: 525-535 33 Walker R G, Willingham A T, Zuker C S. A Drosophilia mechanosensory transduction channel. Science, 2000, 287:2229-2234 34 Di Palma F, Belyantseva I A, Kim H J, et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA, 2002, 99: 14994-14999 35 Kim J, Chung Y D, Park D, et al. A TRPV family ion channel required for hearing in Drosophila. Nature, 2003,424: 81-84 36 Sidi S, Friedrich R W, Nicolson T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science, 2003, 301: 96-99 37 Martinac B, Delcour A H, Minorsky P V, et al. Mechanosensitive ion channels in bacteria. In: Ito F, ed. In Comparative Aspects of Mechanoreceptor Systems. New York: Springer Verlag, 1992. 3-18 38 Sukharev S I, Martinac B, Arshavsky V Y, et al. Two types of mechanosensitive channels in the E. coli cell envelope: solubilization and functional reconstitution. Bio- phys J, 1993, 65: 177-183 39 Sukharev S I, Blount P, Martinac B, et al. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Ann. Rev. Physiol, 1997, 59: 633-657 40 Zoratti M, Ghazi A. Stretch activated channels in prokaryotes. In: Bakker E P, ed. Alkali Transport Systems in Prokaryotes. Boca Raton: CRC Press, 1993. 349-358 41 Berrier C, Besnard M, Ajouz B, et al. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol, 1996, 151: 175-187 42 Martinac B. Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem, 2001, 11: 61-76 43 Strop P, Bass R, Rees D C. Prokaryotic mechanosensitive channels. In: Rees D C, ed. Advances in Protein Chemistry. Amsterdam: Academic Press, 2003, 63: 177-209 44 Le Dain A C, Saint N, Kloda A, et al. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem, 1998, 273: 12116-12119 45 Kloda A, Martinac B. Mechanosensitive channels of Bacteria and Archaea share a common ancestral origin. Eur. Biophys J, 2002, 31: 14-25 46 Minke B, Cook B. TRP channel proteins and signal transduction. Physiol. Rev, 2002, 82: 429-472 47 Ajouz B, Berrier C, Garrigues A, et al. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem,1998, 273: 26670-26674 48 Moe P C, Levin G, Blount P. Correlating a protein structure with function of a bacterial mechanosensitive channel. J. Biol. Chem, 2000, 275: 31121-31127 49 Sukharev S, Blount P, Martinac B, et al. MscL: a mechanosensitive channel in Escherichia coli. Soc. Gen. Physiol. Ser, 1996, 51: 133-141 50 Sukharev S, Betanzos M, Chiang C S, et al. The gating mechanism of the large mechanosensitive channel MscL. Nature, 2001, 409: 720-724 51 Perozo E, Cortes D M, Sompornpisut P, et al. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature, 2002, 418: 942-948 52 Moe P, Blount P. Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry, 2005, 44:12239-12244 53 Sukharev S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Bio- phys J, 2002, 83: 290-298 54 Akitake B, Anishkin A, Sukharev, S. The dashpot mechanism of stretch-dependent gating in MscS. J. Gen. Phys- iol, 2005, 125: 143-154 55 Edwards M D, Booth I R, Miller S. Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr. Opin. Microbiol, 2004, 7: 163-167 56 Edwards M D, Li Y, Kim S, et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat. Struct. Mol. Biol, 2005, 12: 113-119 57 Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci, 2004, 117: 2449-2460 58 Perozo E, Rees D. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol,2003, 13: 432-442 59 Gustin M C, Zhou X L, Martinac B, et al. A mechanosensitive ion channel in the yeast plasma membrane. Science,1988, 242: 762-765 60 Perozo E. Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell Biol, 2006, 7: 109-119 61 Kung C. A possible unifying principle for mechanosensation. Nature, 2005, 436: 647-654 62 Sukharev S, Sigurdson W J, Kung C, et al. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol,1999, 113: 525-539 63 Sukharev S, Anishkin A. Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neu- rosci, 2004, 27: 345-351 64 Chiu S W, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I: structure of the molecular complex. Biophys J, 1999a, 76: 1929 -1938 65 Chiu S W, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II: rates and mechanisms of water transport. Biophys J, 1999b, 76: 1939 -1950 66 Tang Y Z, Chen W Z, Wang C X, et al. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur. Biophys J, 1999, 28: 478-488 67 Woolf T B, Roux B. Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin a channel in a DMPC bilayer. Proteins Struct. Funct. Genet, 1996, 24: 92-114 68 Capener C E, Shrivastava I H, Ranatunga K M, et al. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J, 2000, 78: 2929-2942 69 Fischer W B, Pitkeathly M, Wallace B A, et al. Transmembrane peptide NB of influenza B: a simulation, structure and conductance study. Biochemistry, 2000, 39:12708-12716 70 Forrest L R, Kukol A, Arkin I T, et al. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J, 2000, 78: 55-69 71 Law R J, Forrest L R, Ranatunga K M, et al. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins Struct. Funct. Genet, 2000, 39:47-55 72 Lin J H, Baumgaertner A. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J,2000, 78: 1714-1724 73 Schweighofer K J, Pohorille A. Computer simulation of ion channel gating: the M2 channel of influenza A virus in a lipid bilayer. Biophys J, 2000, 78: 150-163 74 Gullingsrud J, Kosztin D, Schulten K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J, 2001, 80: 2074-2081 75 Bilston L, Mylvaganam K. Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett, 2002, 512: 185-190 76 Colombo G, Marrink S J, Mark A E. Simulation of MscL gating in a bilayer under stress. Biophys J, 2003, 84: 2331-2337 77 Gullingsrud J, Schulten K. Gating of MscL studied by steered molecular dynamics. Biophys J, 2003, 85: 2087-2099 78 Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J, 2004,86: 3496-3509 79 Elmore D E, Dougherty D A. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J, 2003, 85: 1512-1524 80 Meyer G R, Gullingsrud J, Martinac B, et al. Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys J, 2006, 91: 1630-1637 81 Debret G, Valadie H, Stadler A M, et al. New insights of membrane environment effects on MscL channel mechanics from theoretical approaches. Proteins, 2008, 71:1183-1196 82 Yoo J, Cui Q. Curvature generation and pressure profile modulation in membrane by lysolipids: insights from Coarse-Grained simulations. Biophys J, 2009, 97: 2267-2276 83 Louhivuori M, Risselada H J, Giessen V D, et al. Release of content through mechano-sensitive gates in pressurized liposomes. Proc. Natl. Acad. Sci, 2010, 107: 19856-19860 84 Ollila O H S, Louhivuori M, Marrink S J, et al. Protein shape change has a major effect on the gating energy of a mechanosensitive channel. Biophys J, 2011, 100: 1651-1659 85 Rui H, Kumar R, Im W. Membrane tension, lipid adaptation, conformational changes, and energetic in MscL gating. Biophys J, 2011, 101: 671-679 86 Elmore D E, Dougherty D A. Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J, 2001, 81:1345-1359 87 Kong Y, Shen Y, Warth T E, et al. Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 2002, 99: 5999-6004 88 Yefimov S, Van Der Giessen E, Onck P R, et al. Mechanosensitive membrane channels in action. Biophys J, 2008, 94: 2994-3002 89 Jonggu J, Gregory A V. Gating of the Mechanosensitive Channel Protein MscL: The Interplay of Membrane and Protein. Biophys J, 2008, 94: 3497-3511 90 Sukharev S, Durell S R, Guy H R. Structural models of the MscL gating mechanism. Biophys J, 2001, 81, 917-936 91 Monica B, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol, 2002, 9: 704-710 92 Go N, Noguti T, Nishikawa T. Dynamics of a small globular proteins in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA, 1983, 80: 3696-3700 93 Brooks B, Karplus M. Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl Acad. Sci. USA, 1983, 80, 6571-6575 94 Levitt M, Sander C, Stern P S. Protein normal-mode dynamics: trypsin inhibitor, crambin, tibonuclease and lysozyme. J. Mol. Biol, 1985, 181, 423-447 95 Valadie H, Lacapcre JJ, Sanejounand Y H, et al. Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. J. Mol. Biol, 2003, 332: 656-674 96 Wiggins P, Philips R. Analytical models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 2004, 101: 4071-4076 97 Wiggins P, Philips R. Membrane-protein interactions in mechanosensitive channels. Biophys J, 2005, 88: 880-902 98 Markin V S, Sachs F. Thermodynamics of mechanosensitivity. Phys. Biol, 2004, 1: 110-124 99 Turner M S, Sens P. Gating-by-tilt of mechanically sensitive membrane channels. Phys. Rev. Lett, 2004, 93:118103 100 Andrei L L, Pogozheva I D, Lomize M A, et al. Positioning of proteins in membranes: a computational approach. Protein Sci, 2006, 15: 1318-1333 101 Tang Y, Cao G, Chen X, et al. A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL. Biophys J, 2006, 91: 1248-1263 102 Chen X, Cui Q, Tang Y, et al. Gating mechanisms of mechanosensitive channels of large conductance, I: a continuum mechanics-based hierarchical framework. Biophys J, 2008, 95: 563-580 103 Tang Y, Yoo J, Yethiraj A, et al. Gating mechanisms of mechanosensitive channels of large conductance, II: systematic study of conformational transitions. Biophys J,2008, 95: 581-596 104 Tang Y, Yoo J, Yethiraj A, et al. Mechanosensitive channels: insights from continuum-based simulations. Cell Biochem. Biophys, 2008, 52: 1-18 105 Ursell T, Huang K C, Peterson E, et al. Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol, 2007,3: 803-812 106 Boucher P A, Catherine E M, Bela J. Mechanosensitive closed-closed transitions in large membrane proteins: osmoprotection and tension damping. Biophys J, 2009, 97:2761-2770 107 Grage S L, Keleshian A M, Turdzeladze T, et al. Bilayermediated clustering and functional interaction of mscl channels. Biophys J, 2011, 100: 1252-1260 108 Gumbart J, Wang Y, Aksimentiev A, et al. Molecular dynamics simulations of proteins in lipid bilayers.Curr. Opin. Struct. Biol, 2005, 15: 423-431 109 Anishkin A, Sukharev S. Explicit channel conductance: can it be computed? Biophys J, 2005, 88: 3745-3761 110 Nomura T, Sokabe M, Yoshimura K. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J, 2006, 91: 2874-2881 111 Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J, 2004, 86:2883-2895 112 Sotomayor M, Schulten K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys J, 2004, 87: 3050-3065 113 Spronk S A, Elmore D E, Dougherty D A. Voltage dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophys J, 2006, 90: 3555-3569 114 Sotomayor M, Vasquez V, Perozo E, et al. Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J, 2007, 92: 886-902 115 Christine P, Gerhard H. Ion transport through membranespanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J, 2005, 89: 2222-2234 116 Straaten V D, Kathawala G, Trellakis A, et al. BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Sim, 2005, 31: 151-171 117 Sotomayor M, Van Der Straaten T A, Ravaioli U, et al. Electrostatic properties of the mechanosensitive channel of small conductance MscS. Biophys J, 2006, 90: 3496-3510 118 Vora T, CorryB, Chung S H. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. Biochim. Biophys. Acta, 2006, 1758:730-737 119 Akitake B, Anishkin A, Sukharev S. Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat. Struct. Mol. Biol, 2007, 14:1141-1149 120 Anishkin A, Akitake B, Sukharev S. Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys J, 2008, 94: 1252-1266 121 Anishkin A, Kamaraju K, Sukharev S. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. J Gen Physiol, 2008, 132: 67-83 122 Belyy V, Anishkin A, Liu N, et al. The tensiontransmitting ‘clutch’ in the Mechanosensitive channel MscS.Nat. Struct. Mol. Biol, 2010, 17: 451-459 123 Vasquez V, Sotomayor M, Cortes D M, et al. Three dimensional architecture of membrane embedded MscS in the closed conformation. J Mol Biol, 2008, 378: 55-70 124 Vasquez V, Sotomayor M, Morales J C, et al. A structural mechanism for MscS gating in lipid bilayers. Sci- ence, 2008, 321: 1210-1214 125 Wang W, Black S S, Edwards M D, et al. The structure of an open form of an E. coli mechanosensitive channel at3.45 ?A resolution. Science, 2008, 321: 1179-1183 126 Zhong W, Guo W, Ma S. Intrinsic aqueduct orifices facilitate K+ channel gating. FEBS Letters, 2008, 582: 3320-3324 127 Zhong W, Guo W. Mixed modes in opening of KcsA potassium channel from a targeted molecular dynamics simulation. Biochem Biophys Res Commun, 2009, 388(1): 86-90 128 Shi N, Ye S, Alam A, et al. Atomic structure of a Na+- and K+-conducting channel. Nature 2006, 440: 570-574 129 Shen R, Guo W. Ion binding properties and structure stability of the NaK channel. Biochim Biophys Acta, 2009,1788: 1024-1032 130 Alam A, Jiang Y. High-resolution structure of the open NaK channel. Nat Struct Mol Biol, 2009, 16: 30-34 131 Alam A, Jiang Y. Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 2009, 16: 35-41 132 Shen R, Guo W, Zhong W. Dynamic hydration valve controlled ion permeability and stability of NaK channel. Nature Precedings, 2008 http://hdl.handle.net/10101/npre.2008.2045.1 133 Shen R, Guo W, Zhong W. Hydration valve controlled non-selective conduction of Na+and K+in the NaK channel. Biochimica et Biophysica Acta { Biomembranes,2010, 1798: 1474 134 Qiu H, Ma S, Shen R, et al. Dynamic and Energetic Mechanisms for the Distinct Permeation Rate in AQP1 and AQP0. Biochimica et Biophysica Acta { Biomembranes2010, 179: 318 135 Zuo G, Shen R, Ma S, et al. Transport properties of singlefile water molecules inside a carbon nanotube biomimicking water channel. ACS Nano, 2010, 4: 205 136 Zuo G, Shen R, Guo W. Self-adjusted sustaining oscillation of confined water chain in carbon nanotubes. Nano Lett, 2011, 11(12): 5297
点击查看大图
计量
- 文章访问数:1585
- HTML全文浏览量:109
- PDF下载量:1681
- 被引次数:0