-
摘要:复合材料具有比强度高,阻尼性能好及可调整纤维铺层以控制结构变形等优点.复合材料应用于螺旋桨将改善螺旋桨的推进性能和振动特性.通过对国内外复合材料螺旋桨研究成果的回顾、总结和归纳,得出了传统的算法已不满足复合材料螺旋桨的设计和预报要求,复合材料螺旋桨的设计和预报算法需考虑桨叶变形引起的空间流场变化的结论.分析了可借助纤维增强材料所具有的弯扭耦合特性,调整桨叶纤维材料铺层和桨叶结构形式来提高螺旋桨推进效率的规律性.总结了复合材料螺旋桨研究中的关键技术和复合材料螺旋桨设计流程,并指出了复合材料螺旋桨未来研究的趋势.Abstract:Composite materials have high strength-to-weight ratios, improved material damping properties, and their fiber orientations can be exploited to tailor the structural deformation. Composites for marine propellers can be used to reduce fluttering and to improve the hydrodynamic efficiency. Researches at home and abroad on composite marine propellers are reviewed and summarized, which reveals that the conventional calculation algorithm of metal propellers is not suitable for the design and prediction of composite marine propellers. The design and calculation of composite marine propellers need the consideration of the wake flow change resulting from the deformation of propeller blades. The mechanism is analyzed with the help of the bending-twisting coupling characteristics of anisotropic composites. In these composites the fibers can be aligned and stacked and a high efficiency propeller can, with suitable blade configuration, thus be achieved. During the study of composite marine propellers, critical factors are identified. Finally the flowchart of design of composite marine propellers is suggested, and further research topics on composite marine propellers are proposed.
-
1 Young Y. Fluid-structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures,2008, 24:799-818 2 王国强, 董世汤. 船舶螺旋桨理论与应用. 哈尔滨:哈尔滨工程大学出版社, 2007. 169 3 Young Y L. Time-dependent hydroelastic analysis of cavitating propulsors. Journal of Fluids and Structures, 2007,23:269-295 4 Kerwin J, Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Transactions Society of Naval Architects and Marine Engineers, 1978, 86:218-253 5 Kinnas S, Fine N. Theoretical prediction of the midchord and face unsteady propeller sheet cavitations. In:Proceedings of the Fifth International Conference on Numerical Ship Hydrodynamics, Hiroshima, Japan, 1989 6 Hess J L, Valarezo W. Calculation of steady flow about propellers by means of a surface panel method. In:23rd Aerospace Sciences Meeting, AIAA, Reno, Nevada, 1985.1-8 7 Lee J T. A potential based panel method for the analysis of marine propellers in steady flow:[PhD Thesis]. Boston:Massachusetts Institute of Technology, 1987, 3-50 8 唐登海, 董世汤. 船舶螺旋桨周围黏性流场数值预报与流场分析. 水动力学研究与进展, 1997, 12(4):426-436 9 Funeno I. Analysis of steady viscous flow around a highly skewed propeller. Kansai Society of Naval Architects,1999, 231:1-6 10 Chen B, Stern F. Computational fluid dynamics of fourquadrant marine-propulsor flow. Journal of Ship Research, 1999, 43(4):218-228 11 高富东, 潘存云, 蔡汶珊, 等. 基于 CFD 的螺旋桨敞水性能数值分析与验证. 机械工程学报, 2010, 46(8):133-139 12 郭鹏程, 罗兴锜, 刘胜柱. 基于三维紊流数值计算的离心泵叶轮优化设计. 机械工程学报, 2004, 40(4):181-184 13 高富东, 姜乐华, 潘存云. 基于计算流体动力学的两栖车辆水动力特性数值计算. 机械工程学报, 2009, 45(5):134-139 14 Ji B, Luo X W, Wang X, et al. Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller. Journal of Fluids Engineering,2011, 133:0111021-0111028 15 The Propulsion Committee. Final report and recommendations to the 23rd ITTC. In:Proceedings of 23rd International Towing Tank Conference, 2002. 134-136 16 Atkinson P, Glover J. Propeller hydroelastic effects.Transactions of Society of Naval Architects and Marine Engineers, 1988, 21:11-21 17 Kuo J, Vorus W. Propeller blade dynamic stress. In:Tenth Ship Technology and Research(STAR)Symposium.Norfolk, VA 1985. 39-69 18 Kuo J. Analysis of propeller blade dynamic stresses:[PhD Thesis]. Michigan:The university of Michigan, 1984. 30-90 19 Jiang C W, Huang T T, Ng R, et al. Propeller hydrodynamic loads and blade stresses and deflections during backing and crashback operations. In:SNAME Propellers/Shafting’91,Virginia Beach, VA, USA, 1991 20 Lin H, Lin J. Nonlinear hydroelastic behavior of propellers using a finite element method and lifting surface theory.Journal of Marine Science and Technology, 1996, 1(2):114-124 21 Georgiev D J, Ikehata M. Hydroelastic effects on propeller blades in steady flow. Journal of SNAJ, 1998. 184. 22 Young Y L. Hydroelastic modeling of surface-piercing propellers. In:Proceedings of 25th Symposium on Naval Hydrodynamics, St John’s, Canada, 2004 23 Neugebauer J, Abdel-Maksoud M, Banfred-Braun M.Fluid-structure interaction of propeller. In:IUTAM Symposium on Fluid-structure Interaction in Ocean Engineering, 2008. 191-204 24 Lin G. Comparative stress-deflection analyses of a thickshell composite propeller blade. Bethesda:David Taylor Research Center, 1991 25 Searle T, Chudley J, Short D, et al. The composite advantage. In:SNAME Propellers/Shafting’94, Virginia Beach,VA, USA, 1994 26 Dai C, Fraser J, Coffin P, et al. Hydrodynamic simulation of a passive blade control for tip vortex cavitation control. In:International Conference on Propeller Cavitation, Newcastle Upon Tyne, United Kingdom, 1995 27 Lin H, Lin J. Strength evaluations of a composite marine propeller blade. Journal of Reinforced Plastics and Composites, 2005, 17:1791-1807 28 Gowing S, Coffin P, Dai C. Hydrofoil cavitation improvements with elastically coupled composite material. In:25th American Towing Tank Conference, Iowa City, IA,USA, 1998 29 Young Y L. Hydroelastic response of composite marine propellers. In:Proceedings of Propeller/Shafting 2006 Symposium, SNAME, 2006 30 Young Y L, Michael T J, Seaver M, et al. Numerical and experimental investigations of composite marine propellers. In:Proceedings of 26th Symposium on Naval Hydrodynamics, Rome, Italy, 2006 31 Young Y L, Savander B R. Transient hydroelastic analysis of surface-piercing propellers. In:Proceedings of the 7th International Symposium on Cavitation, Ann Arbor,Michigan, 2009 32 Young Y L. Hydroelastic behavior of flexible composite propellers in wake inflow. In:16th International Conference on Composite Materials, Kyoto, Japan, 2007 33 Young Y L, Liu Z. Hydroelastic tailoring of composite naval propulsors. In:Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007 34 Chen B, Neely S, Michael T, et al. Design, fabrication and testing of pitchadapting(flexible)composite propellers. In:the SNAME Propeller/Shafting Symposium, Williamsburg, VA, 2006 35 Liu Z, Young Y L.Utilization of bend-twist coupling for performance enhancement of composite marine propellers. Journal of Fluids and Structures, 2009, 25:1102-1116 36 Motley M R, Liu Z, Young Y L. Utilizing fluid-structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake. Composite Structures, 2009, 90:304-313 37 Jose P B, Christian B, Poul A. Hydro-elastic analysis and optimization of a composite marine propeller. Marine Structures, 2010, 23:22-38 38 洪毅, 赫晓东. 复合材料船用螺旋桨设计与CFD/FEM计算. 哈尔滨工业大学学报, 2010, 42(3):404-408 39 Hong Y, He X D, Wang R G, et al. Dynamic responses of composite marine propeller in spatially wake. Polymers& Polymer Composites, 2011, 19(4-5):405-411 40 Mulcahy N L. Structural design of shape-adaptive composite marine propellers:[Master Thesis]. Australia:University of New South Wales, 2010. 20-120 41 Mulcahy N L, Prusty B G, Gardiner C P. Flexible composite hydrofoils and propeller blades. International Journal of Small Craft Technology, 2011, 153(B1):39-46 42 Mulcahy N L, Prusty B G, Gardiner C P. Hydroelastic tailoring of flexible composite propellers. Ships and Offshore Structures, 2010, 5(4):359-370 43 Liu Z K. Transient analysis and design of composite structures in multiphase flows:[PhD Thesis]. Princeton:Princeton University, 2008. 15-120 44 Peter A C, Michael E, Young Y L, et al. Propeller forces and structural response due to crashback. In:Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008 45 张孝深, 陶守华, 许大五. 组合式增强尼龙船用螺旋桨结构.船舶工程, 1982,(01):51-52 46 Marsh G. A new start for marine propellers? Reinforced Plastics, 2004, 48(11):34-37 47 Lin C C, Lee Y J, Hung C S. Optimization and experiment of composite marine propellers. Composite Structures, 2009, 89:206-215 48 Stauble U. Advances in submarine propulsion. Naval Forces, 2007, 28 49 Wozniak C D. Analysis, fabrication, and testing of a composite bladed propeller for a naval academy yard patrol(YP)craft. Annapolis:Naval Academy, 2005 50 范永忠, 孙康, 吴人洁. 环氧树脂基复合材料的阻尼性能及在降噪上的应用. 研究材料工程, 2000(3):29-35 51 Harshin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47:329-334 52 Lin H J, Tsai J F. Analysis of underwater free vibrations of a composite propeller blade. Journal of Reinforced Plastics and Composites, 2008, 27(5):1-12 53 Lin H J, Lin J J. Effects of stacking sequences on the hydroelastic behavior of composite propeller blades. In:Proceeding of ICCM-11, Volume I:Composites Applications and Design Gold Coast, Australia, 1997. 757-761 54 Lee Y J, Lin C C. Optimized design of composite propeller. Mechanics of Advanced Materials and Structures, 2004, 11(1):17-30 55 Lin C C, Lee Y J. Stacking sequence optimization of composite laminates using genetic algorithm with local improvement. Composite Structure, 2004, 63:339-345 56 Lee Y J, Lin C C, Ji J C, et al. Optimization of a composite rotor blade using a genetic algorithm with local search. Journal of Reinforced Plastics and Composites,2005, 24(16):1759-1769 57 Lee Y J, Lin C C. Regression of the response surface of laminated composite structures. Composite Structures,2003, 62:91-105 58 Liu Z, Young Y L. Utilization of deformation coupling in self-twisting composite propellers. In:Proceedings of 16th International Conference on Composite Materials, Kyoto,Japan, 2007 59 Plucinski M, Young Y, Liu Z. Optimization of a selftwisting composite marine propeller using a genetic algorithm. In:Proceedings of 16th international conference on composite materials, Kyoto, Japan, 2007 60 Young Y L, Motley M R. Influence of material and loading uncertainties on the hydroelastic performance of advanced material propellers. In:Second International Symposium on Marine Propulsors, Hamburg, Germany, 2011 61 Motley M R, Young Y L. Influence of uncertainties on the response and reliability of self-adaptive composite rotors.Composite Structures, 2011, 94:114-120 62 Young Y L, Liu Z, Motley M R. Influence of material anisotropy on the hydroelastic behaviors of composite marine propellers. In:27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008 63 Motley M R, Young Y L, Baker J W. Reliability-based design and optimization of self-twisting composite marine rotors. In:Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering,Honolulu, Hawaii, 2009 64 Young Y L, Baker J W, Motley M R. Reliability-based design and optimization of adaptive marine structures.Composite Structures, 2010, 92:244-253 65 Motley M R, Young Y L. Performance-based design and analysis of flexible composite propulsors. Journal of Fluids and Structures, 2011, 27:1310-1325 66 Motley M R, Young Y L. Performance-based design of adaptive composite marine propellers. In:28th Symposium on Naval Hydrodynamics Pasadena, California, 2010 67 Mouritz A, Gellert E, Burchill P, et al. Review of advanced composite structures for naval ships and submarines. Composite Structures, 2001, 53:21-41 68 Zetterlind V E, Watkins S E, Spoltman M W. Feasibilitystudy of embedded fiber-optic strain sensing for compos- ite propeller blades. In:Proceedings of SPIE2001, 2001,4332:143-152 69 Zetterlind V E, Watkins S E, Spoltman M W. Fatigue testing of a composite propeller blade using fiber-optic strain sensorsp. IEEE Sensors Journal, 2003, 3(4):393-399 70 Seaver M, Trickey S T, Nichols J M. Composite propeller performance monitoring with embedded FBGs. Optical Sciences, 2006, review:1-3
点击查看大图
计量
- 文章访问数:3133
- HTML全文浏览量:212
- PDF下载量:1729
- 被引次数:0