留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体动理学格式研究进展

李启兵,徐昆

downloadPDF
李启兵, 徐昆. 气体动理学格式研究进展[J]. 力学进展, 2012, 42(5): 522-537. doi: 10.6052/1000-0992-11-149
引用本文: 李启兵, 徐昆. 气体动理学格式研究进展[J]. 力学进展, 2012, 42(5): 522-537.doi:10.6052/1000-0992-11-149
LI Qibing, XU Kun. PROGRESS IN GAS-KINETIC SCHEME[J]. Advances in Mechanics, 2012, 42(5): 522-537. doi: 10.6052/1000-0992-11-149
Citation: LI Qibing, XU Kun. PROGRESS IN GAS-KINETIC SCHEME[J].Advances in Mechanics, 2012, 42(5): 522-537.doi:10.6052/1000-0992-11-149

气体动理学格式研究进展

doi:10.6052/1000-0992-11-149
基金项目:国家自然科学基金项目(10872112,11172154)资助;香港大学教育资助委员会(621709,621011)资助
详细信息
    作者简介:

    李启兵,男,1973年生,四川大竹人.1997年、2002年先后获得清华大学工程力学学士和流体力学博士学位.2004年博士后出站后任清华大学航天航空学院助理研究员,2008年晋升为副教授.《计算力学学报》编委.主要研究方向为新型计算流体力学方法以及可压缩湍流等多种流动问题的数值模拟.

    通讯作者:

    李启兵

PROGRESS IN GAS-KINETIC SCHEME

Funds:The project was supported by the National Natural Science Foundation of China (10872112, 11172154) and Hong Kong Research Grant Council (621709, 621011).
More Information
    Corresponding author:LI Qibing
  • 摘要:介绍了近年来气体动理学格式(gas-kinetic scheme, GKS, 亦简称BGK 格式) 的主要研究进展, 重点是高阶精度动理学格式及适合从连续流到稀薄流全流域的统一动理学格式. 通过对速度分布函数的高阶展开和对初值的高阶重构, 构造了时间和空间均为三阶精度的气体动理学格式. 研究表明, 相比于传统的基于Riemann 解的高阶格式, 新格式不仅考虑了网格单元界面上物理量的高阶重构, 而且在初始场的演化阶段耦合了流体的对流和黏性扩散, 也能够保证解的高阶精度. 该研究为高精度计算流体力学(computatial uiddymamics, CFD) 格式的建立提供了一条新的途径. 通过分子离散速度空间直接求解Boltzmann 模型方程,在每个时间步长内将宏观量的更新和微观气体分布函数的更新紧密地耦合在一起, 建立了适合任意Knudsen(kn) 数的统一格式, 相比于已有的直接离散格式具有更高的求解效率. 最后, 本文还讨论了合理的物理模型对数值方法的重要性. 气体动理学方法的良好性能来自于Boltzmann 模型方程对计算网格单元界面上初始间断的时间演化的准确描述. 气体自由运动与碰撞过程的耦合是十分必要的. 通过分析数值激波层内的耗散机制,我们认识到采用Euler 方程的精确Riemann 解作为现代可压缩CFD 方法的基础具有根本的缺陷, 高马赫数下的激波失稳现象不可避免. 气体动理学格式为构造数值激波结构提供了一个重要的可供参考的物理机制.

  • 1 马延文, 傅德薰. 高精度有限差分法与复杂流动的数值模拟. 自然科学进展, 2002, 12(8): 785-793
    2 邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展. 力学进展, 2007, 37(3):417-427
    3 高智. 数值摄动算法及其CFD 格式. 力学进展, 2010,40(6):607-633
    4 阎超, 于剑, 徐晶磊, 等. CFD 模拟方法的发展成就与展望. 力学进展, 2011, 41(5):562-589
    5 Chen J, Shu C W. High order schemes for CFD: a review. 计算物理, 2009, 26(5):633-655
    6 张涵信, 沈孟育, 计算流体力学—差分方法的原理和应用. 北京:国防工业出版社, 2003
    7 Pereira J M C, Kobayashi M H, Pereira I C F. A fourthorder-accurate finite volume compact method for the incompressible Navier-Stokes solutions. J. Comput. Phys.,2001, 167:217-243
    8 Popescu M, Vedder R, Shyy W. A finite volume-based high-order Cartesian cut-cell method for wave propagation. Int. J. Numer. Meth. Fluids, 2008, 56: 1787-1818
    9 Ben-Artzi M, Falcovitz J. Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge University Press, 2003
    10 Xu K, Prendergast K H. Numerical Navier-Stokes solutions from gas-kinetic theory. J. Comput. Phys., 1994,114(1): 9-17
    11 Xu K. Gas-Kinetic Schemes for unsteady compressible flow simulations. In: 29th CFD Lecture Series 1998-03 von Kárman Institute for Fluid Dynamics, Belgium, 1998
    12 Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys., 2001, 171: 289-335
    13 Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 1954,94: 511-525
    14 Chu C K. Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids, 1965, 8: 12
    15 Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys.,1995, 120(2): 323-39
    16 Li Z H, Zhang H X. Gas-kinetic numerical studies of threedimensional complex flows on spacecraft re-entry. J. Com-put. Phys., 2009, 228: 1116-1138
    17 Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 2998, 30: 329-64
    18 Ohwada T, Kobayashi S. Management of discontinuous reconstruction in kinetic schemes. J. Comput. Phys., 2004,197: 116
    19 K Xu. A slope-update scheme for compressible flow simulation. J. Comput. Phys., 2002, 178(1): 252-261
    20 Torrilhon M, Xu K. Stability and consistency of kinetic upwinding for advection-diffusion equations. IMA J. Nu-mer. Anal., 2006, 26: 686-722
    21 Liu S H, Xu K. Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations. Z. Angew. Math. Phys., 2001, 52(1): 62-78
    22 Xu K, Martinelli L, Jameson A. Gas-kinetic finite volume methods flux-vector splitting and artificial diffusion. J. Comput. Phys., 1995, 120: 48-65
    23 Mandal J C, Deshpande S M. Kinetic flux vector splitting for Euler equations. Comput. Fluids, 1994, 23(2): 447-78
    24 Chou S Y, Baganoff D. Kinetic flux-vector splitting for the Navier-Stokes equations. J. Comput. Phys., 1997,130(2): 217-230
    25 Li Q B, Fu S, Xu K. Application of BGK scheme with kinetic boundary conditions in hypersonic flow. AIAA J.,2005, 43: 2170
    26 Xu K, Li Z H. Microchannel flows in slip flow regime: BGK-Burnett solutions. J. Fluid Mech., 2004, 513: 87-110
    27 Xu K, Mao M L, Tang L. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys., 2005, 203: 405
    28 Xu K. BGK-based scheme for multicomponent flow calculations. J. Comput. Phys., 1997, 134(1): 122-133
    29 Lian Y S, Xu K. A gas-kinetic scheme for multimaterial flows and its application in chemical reaction. J. Comput. Phys., 2000, 163: 349-375
    30 Lian Y S, Xu K. A gas-kinetic scheme for reactive flows. Comput. Fluids, 2000, 29: 725-748
    31 Li Q B, Fu S, Xu K. A compressible Navier-Stokes flow solver with scalar transport. J. Comput. Phys., 2005, 204:692-714
    32 Xu K. A kinetic method for hyperbolic-elliptic equations and its application in two-phase flow. J. Comput. Phys.,2001, 166(2): 383-399
    33 Li Q B, Fu S. A gas-kinetic BGK scheme for gas-water flow. Comput. Math. Appl., 2011, 61: 3639-3652
    34 Que Y T, Xu K. The study of roll-waves in inclined open channels and solitary wave run-up. Int. J. Numer. Meth-ods Fluids, 2006, 50: 1003-1027
    35 Ghidaoui M S, Kolyshkin A A, Liang J H, et al. Linear and nonlinear analysis of shallow wakes. J. Fluid Mech.,2006, 548: 309-340
    36 Xu K. A well-balanced gas-kinteic scheme for the shallow water equations with source terms. J. Comput. Phys.,2002, 178: 533-562
    37 Luo J, Xu K, Liu N. A well-balanced symplecticitypreserving gas-kinetic scheme for hydrodynamic equations under gravitational field. SIAM J. Sci. Comput., 2011,33(5): 2356-2381
    38 Tian C L, Xu K, Chan K L, et al, A three-dimensional multidimensional gas kinetic scheme for the Navier-Stokes equations under gravitational fields. J. Comput. Phys.,2007, 226: 2003-2027
    39 Tang H Z, Xu K, Cai C P. Gas-kinetic scheme for three dimensional magneto hydrodynamics. Numer. Math. Theor. Meth. Appl., 2010, 3(4): 387-404
    40 Xu K. Gas-kinetic theory based flux splitting method for ideal magneto hydrodynamics. J. Comput. Phys., 1999,153(2): 334-352
    41 Tang H Z, Xu K, A high-order gas-kinetic method for multidimensional ideal magneto hydrodynamics. J. Comput. Phys., 2000, 165(1): 69-88
    42 Yang J Y, Hsieh T Y, Shi Y H, et al. High order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics. J. Comput. Phys., 2007,227: 967-982
    43 Liao W, Luo L S, Xu K. Gas-kinetic scheme for continuum and near-continuum hypersonic flows. J. Spacecraft and Rockets, 2007, 44(6): 1232-1240
    44 Xu K, Liu H. Multiscale gas-kinetic simulation for continuum and near continuum flows. Phys. Rev. E, 2007, E75:016306
    45 Li Q B, Fu S. Applications of implicit BGK scheme in near-continuum flow. Int. J. Comput. Fluid Dyn., 2006,20(6): 453-461
    46 毛枚良, 徐昆, 邓小刚. 动能BGK算法在近连续流模拟中的应用. 空气动力学学报, 2005, 23(3): 317
    47 赵建兵, 李启兵, 章光华, 等. 应用BGK 格式数值模拟微槽道中的气体流动. 清华大学学(自然科学版), 2003, 43(8):1083-1087
    48 Xu K. Super-Burnett solutions for Poiseuille flow. Phys. Fluids, 2003, 15(7):2077-2080
    49 Ohwada T, Xu K. The kinetic scheme for full Burnett equations. J. Comput. Phys., 2004, 201: 315-332
    50 Xu K, Liu H, Jiang J. Multiple temperature kinetic model for continuum and near continuum flows. Phys. Fluids,2007, 19: 016101
    51 Xu K. Regularization of the Chapman-Enskog expansion and its description of shock structure. Phys. Fluids, 2002,14(4): L17-20
    52 Xu K, Tang L. Non-equilibrium BGK model for nitrogen shock structure. Phys. Fluids, 2004, 16: 3824
    53 Xu K, Liu H W. A Multiple temperature kinetic model and its application to near continuum flows. Commun. Comput. Phys., 2008, 4(5): 1069-1085
    54 Liao W, Peng Y, Luo L S, et al. Modified gas-kinetic scheme for shock structures in argon. Prog. Comput. Fluid Dyn., 2008, 8: 97-108
    55 Cai C P, Liu D, Xu K. A one-dimensional multipletemperature gas-kinetic BGK scheme for shock wave computation. AIAA J., 2008, 46(5): 1054-1062
    56 Xu K. A generalized Bhatnagar-Gross-Krook model for nonequilibrium flows. Phys. Fluids, 2008, 20: 026101
    57 Xu K, He X, Cai C. Multiple temperature kinetic model and gas-kinetic method for hypersonic nonequilibrium flow computations. J. Comput. Phys., 2008, 227: 6779-6794
    58 Xu K, Guo Z. Generalized gas dynamic equations with multiple translational temperatures. Mod. Phys. Lett. B, 2009, 23: 237-240
    59 Xu K, Josyula E. A multiple translational temperature model and its shock structure solution. Phys. Rev. E, 71,2005, 71: 056308
    60 Xu K, Josyula E. Continuum formulation for nonequilibrium shock structure calculation. Commun. Com-put. Phys., 2006, 1(3): 425-450
    61 Li Q B, Fu S. On the internal energy relaxation model for nonequilibrium flow. In: The 2nd International ISCM Symposium and the 12th International EPMESC Conference, Hong Kong - Macao, 2009-11-29-12-03
    62 Ni G X, Jiang S, Xu K. Efficient kinetic schemes for steady and unsteady flow simulations on unstructured meshes. J. Comput. Phys., 2008, 227: 3015-3031
    63 Kim C, Jameson A. A robust and accurate LED-BGK solver on unstructured adaptive meshes. J. Comput. Phys., 1998, 143(2): 598-627
    64 Sun X M, He F. A high-order meshless Bhatnagar-Gross-Kross scheme based on point collocation. Chin. Phys. Lett., 2004, 21(2): 233-236
    65 Jin C Q, Xu K. An adaptive grid method for two dimensional viscous flows. J. Comput. Phys., 2006, 218: 68-81
    66 Jin C Q, Xu K. A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. J. Com-put. Phys., 2007, 222: 155-175
    67 Jin C Q, Xu K. Numerical study of the unsteady aerodynamics of freely falling plates. Commun. Comput. Phys.,2008, 3: 834-851
    68 Ni G, Jiang S, Xu K. Remapping-free ALE-type kinetic method for flow computations. J. Comput. Phys., 2009,228: 3154-3171
    69 Jing C Q, Xu K, Chen S Z. A three dimensional gas-kinetic scheme with moving mesh for low-speed viscous flow computation. Adv. Appl. Math. Mech., 2010, 2(6): 746-762
    70 Guo Z L, Liu H W, Luo L S, et al. A comparative study of the LBM and GKS methods for 2D near incompressible flows. J. Comput. Phys., 2008, 227: 4955-4976
    71 Xu K, He X Y. Lattice Boltzmann method and gas-kinetic BGK scheme in the low Mach number viscous flow simulations. J. Comput. Phys., 2003, 190:100-117
    72 Su M D, Xu K, Ghidaoui M S. Low-speed flow simulation by the gas-kinetic scheme. J. Comput. Phys., 1999,150(1):17-39
    73 Xu K, Lui S H. Rayleigh-Benard simulation using the gaskinetic Bhatnagar-Gross-Krook scheme in the incompressible limit. Phys. Rev. E, 1999, 60(1): 464-470
    74 Xu K. Discontinuous Galerkin BGK method for viscous flow equations: one-dimensional systems. SIAM J. Sci. Comput., 2004, 23(6): 1941-1963
    75 Liu H W, Xu K. A Runge-Kutta Discontinuous Galerkin Method for Viscous Flow Equations. J. Comput. Phys.,2007, 224: 1223-1242
    76 Luo H, Luo L, Xu K. A Discontinuous Galerkin method based on BGK scheme for the Navier-Stokes equations on arbitrary grids. Adv. Appl. Math. Mech., 2009, 1:301-318
    77 Li Q B, Fu S. Application of gas-kinetic BGK scheme in three-dimensional flow. AIAA 2011-386, 49th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando Florida, 2009-01-04-07
    78 李启兵. 应用BGK格式对可压缩混合层的数值研究: [博士论文]. 北京: 清华大学, 2002
    79 Li Q B, Fu S. Numerical simulation of high-speed planar mixing layer. Comput. Fluids, 2003, 32: 1357-1377
    80 Fu S, Li Q B. Numerical simulation of compressible mixing layers. Int. J. Heat Fluid Flow, 2006, 27: 895-901
    81 Kerimo J, Girimaji S S. Boltzmann-BGK approach to simulating weakly compressible 2D turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbulence, 2007, 8: N 46
    82 Liao W, Peng Y, Luo L S. Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Phys. Rev. E, 2009, 80: 046702
    83 Chit O J, Omar A A, Asrar W. Reynolds averaged Navier- Stokes flow computation of RAE2822 airfoil using gaskinetic BGK scheme. IMECS, Hong Kong, 2009-03-18-20
    84 李启兵, 符松. BGK格式与可压缩湍流模拟. 见: 开云棋牌官方 学术大会2009论文摘要集. 开云棋牌官方 学术大会, 郑州, 2009
    85 Li Q B, Tan S, Fu S, et al. Numerical simulation of compressible turbulence with gas-kinetic BGK scheme. In: 13th Asian Congress of Fluid Mechanics, Dhaka, Bangladesh, 2010-12-17-21
    86 Xiong S W, Zhong C W, Zhou C S, et al. Numerical simulation of compressible turbulent flow via improved gaskinetic BGK scheme. Int. J. Numer. Meth. Fluids, 2011,67: 1833-1847
    87 李素循. 典型外形高超声速流动特征. 长沙: 国防工业出版社, 2007
    88 李锦. 气体动理学BGK格式研究及其在近连续-滑移区域流动中的应用: [硕士论文]. 绵阳:中国空气动力研究与发展中心, 2012
    89 Su M D, Yu J D. A parallel large eddy simulation with unstructured meshes applied to turbulent flow around car side mirror. Comput. Fluids, 2011, 55: 24-28
    90 邓家泉, 谢宇峰, 王现方. 以玻尔兹曼方法模拟潮流. 人民珠江, 2006, 6: 25-28
    91 Kolobov V I, Arslanbekov R R. Towards adaptive kineticfluid simulations of weakly ionized plasmas. J. Comput. Phys.,2012, 231: 839-869
    92 Li Q B, Xu K, Fu S. A high-order gas-kinetic Navier- Stokes solver. J. Comput. Phys., 2010, 229: 6715-6731
    93 Yang M, Wang Z J. A parameter-free generalized moment limiter for high-order methods on unstructured grids, AIAA 2009-605, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando Florida, 2009-01-05-08
    94 Li Q B, Fu S. On the multidimensional gas-kinetic BGK scheme. J. Comput. Phys., 2006, 220(532):
    95 Ren Y X, Sun Y T. A multi-dimensional upwind scheme for solving Euler and Navier-Stokes equations. J. Com-put. Phys., 2006, 219: 391-403
    96 Li Q B, Xu K, Fu S. A new high-order multidimensional scheme. In: 6th International Conference on Computational Fluid Dynamics, St. Petersburg, Russia, 2010-07-12-16
    97 Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows. J. Comput. Phys., 2001, 167: 393-412
    98 樊菁, 沈青. 微尺度气体流动. 力学进展, 2002, 32(3): 321-336
    99 李志辉, 张涵信. 稀薄流到连续流的气体运动论统一数值算法初步研究. 空气动力学学报, 2000, 18(3): 252-9
    100 李志辉. 从稀薄流到连续流的气体运动论统一数值算法研究: [博士论文]. 四川绵阳: 中国空气动力研究与发展中心,2001
    101 Xu K, Huang J C. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys., 2010, 229:7747-7764
    102 Kolobov V I, Arslanbekov R R, Aristov V V, et al. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J. Comput. Phys., 2007,223: 589-608
    103 Huang J C, Xu K, Yu P B. A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations. Preprint, 2012, http://www.math.ust.hk/ makxu/PAPER/unified-microflow.pdf
    104 Huang J C, Xu K, Yu P B. A unified gas-kinetic scheme for continuum and rarefied flows II: Multi-dimensional cases. Commun. Comput. Phys., 2012, 3(3): 662-690
    105 Wang R J, Xu K. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme. Acta Mech. Sin. 2012, 28(4): 1022-1029
    106 Chen S Z, Xu K, Li C B, et al. A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 2012, 231(20): 6643-6664
    107 Li J Q, Li Q B, Xu K. Comparison of generalized Riemann solvr and the gas-kinetic scheme for inviscid compressible flow simulations. J. Comput. Phys., 2011, 230: 5080-5099
  • 加载中
计量
  • 文章访问数:2656
  • HTML全文浏览量:185
  • PDF下载量:1888
  • 被引次数:0
出版历程
  • 收稿日期:2011-10-28
  • 修回日期:2012-06-08
  • 刊出日期:2012-09-25

目录

    /

      返回文章
      返回

        Baidu
        map