-
摘要:阐明线性弹性力学和线性弹性结构理论中解的存在性的基本概念和研究解的存在性意义, 简述微分方程和弹性力学解的存在性的研究结果, 着重介绍和评价王大钧和胡海昌的关于复杂结构和组合弹性结构理论解的存在性的研究成果, 介绍了他们的结构理论算子正定性定理和能量嵌入算子紧致性定理.Abstract:This article explains the basic concepts relevant to the existence of solutions and its significance for the linear elasticity theory and linear elastic structure, outlines the solution of differential equations and the existence of the elasticity, evaluates the original contribution to the existence of solutions of the multi-structure by Wang Dajun and Hu Hai-chang, and presents Wang-Hu positive definiteness and compactness in the theories of elastic structures.
-
1 Courant R, Hilbert D. Methods of Mathematical Physics. New York: Interscience Publising, INC, 1953 2 Михин С Г.Проблема Минимума Квадратичного Функциона λа.Государственное издателъство тихнико теоретической литературы,1952. 3 Friedrichs K. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Mathe-matics,1947, 48(2) 4 михлин С Т.Вариационные Методы Ращения задач Математической физики,успехи Матем наук,Т,Т,м.Вып. 6 (40), 1950. 5 Зйдус ДМ.Осмещанной загаче теорин упгугости,дАн сссР,Т. 76, No. 2, 1951. 6 Payne L E, Weinberger H F. On Korn’s inequality. Arch. Rational Mech. Anal., 1961, 8 7 Fichera G. Linear elliptic differential systems and eigenvalue problem. Lecture notes in mathematics. Berlin-Heidelberg-New York: Springer, 1965 8 Fichera G. Existense theorems in elasticity. Encyclopedia of Physics. In: Flügge S, ed. a/2, New York: Springer-Verlog,1972 9 Kupradze V D. Potential Methods in the Theory of Elasticity. Colomiba: Jerusalem, 1965. 32 10 Kupradze V D, Gegelia F G, Basheleishvili M O, et al. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. California: North-Holland Publishing Company, 1979 11 Shoikhet B A. On existence theorems in linear shell theory. PMM, 1974, 38: 567-571 12 Gordegiani D G. On the solveability of some boundary value problems for a variant of the theory of thin shells. Dokl. Akad. Nauk SSSR, 215 13 Bernadou M, Ciarlet P G. Sur L’ Ellipticite du Models linéaire de Cogues de W. T. Koiter. Lecture Notes in Economics and Mathemetics Systems 134. Computing Methods in Applied Sciences and Engineering, Second Inter. Symp. Dec. 1975, 15-19. New York: Springer-Verlog,1976. 89-136 14 武际可. 薄壳方程组椭圆形条件的证明. 固体力学学报,1981, 4: 435-444 15 Bernadou M, Lalanne B. Sur l’approximation des coques minces, par des méthods B-splines et éléments finis. In: Grellier J P, Campel G M. eds. Tendances Actuelles en Calcul des structures. Paris: Editions Pluralis, 1985. 939-958 16 Ciarlet P G, Miara B. Justification of the two-dimensional equations of a linearly elastic shallow shell. Comm. Pare Apple. Math., 1926, 45: 327-360 17 Bernadou M, Ciarlet P G, Miara B. Existence theorems for two-dimensional linear shell theories. Journal of Elas-ticity, 1994, 34: 111-138 18 王大钧, 胡海昌. 弹性结构理论中两类算子的正定性和紧致性的统一证明. 力学学报, 1982, 18(2): 111-121 19 王大钧, 胡海昌. 弹性结构理论中线性振动普遍性质的统一论证. 振动与冲击, 1982, 1: 6-16 20 Wang D J, Hu H C. Positive definiteness and compactness of two kind of operator in theories of elastic structures.Scientia. Sinica, (Series A), 1985, XXVIII(7): 727-739 21 胡海昌. 广义变分原理在近似解中的合理利用. 力学学报,1982, 18(2): 1-7 22 Wang D J, Wang W Q. The reasonableness problems of theories of structures carrying concentrated masses, springs and supports in vibration Problems. Acta Me-chanica Solida Sinca, 1989, 2: 247-251 23 Wang Q, Wang D J. Singularity under a concentrated force in elasticity. Applied Mathematics And Mechanics,1993, 14(8):707-711 24 Leung A Y T, Wang D J, Wang Q. On concentrated masses and stiffnesses in structural theories. Int. J. of Structural Stability and Dynamics, 2004, 4(2): 171-179 25 冯康. 组合流形上的椭圆方程与组合弹性结构. 计算数学,1979, 1(3): 199-208 26 冯康, 石钟慈. 弹性结构的数学理论. 北京: 科学出版社,1984 27 孙博华. 组合弹性结构的分析理论及应用: [博士论文]. 兰州: 兰州大学, 1988. 12 28 孙博华, 叶志明. 组合弹性结构的力学分析. 中国科学, 2009,39(3): 394-413 29 Sun B H, Ye Z M. Formulation of elastic multi-structures. Science in China Series G: Physics, Mechanics and As-tronomy, 2009, 52(6): 935-953 30 Valid R. The Nonlinear Theory of Shells Through Variational Principles. From Algebra to Differential Geometry. New Jersey: John Wiley & Sons, 1995 31 邱吉宝, 向树红, 张正平. 计算结构动力学. 合肥: 中国科学技术大学出版社, 2009 32 武际可. 近代力学在中国的传播与发展. 北京: 高等教育出版社, 2005 33 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的数学模型. 中国科学A辑: 数学, 2005, 35(6): 664-684 34 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的有限元分析. 中国科学A辑: 数学, 2005, 35(10): 1100-1119
点击查看大图
计量
- 文章访问数:1646
- HTML全文浏览量:98
- PDF下载量:1449
- 被引次数:0