DEVELOPMENT ON MATHEMATICAL THEORY OF ELASTICITY OF QUASICRYSTALS AND SOME RELEVANT TOPICS
-
摘要:本文对固体准晶力学性能和准晶数学弹性, 塑性, 断裂以及有关研究的进展作了评论, 尤其对材料常数和塑性变形行为的测量, 一维、二维、三维准晶弹性理论, 动力学、非线性、缺陷理论、准晶弹性新型偏微分方程的推导和精确分析解, 复分析方法, 变分原理和有限元方法, 有限差分方法这些宏观问题和它们的数学方法进行了分析, 同时对准晶晶格动力学问题的数学理论也作了初步讨论. 近来在软物质中发现了12 次和18次对称准晶, 意义重大, 这里也做了初步介绍. 文中重点讨论此领域最近这些年来中国科学工作者的工作.Abstract:This paper gives an introduction to the development on mathematical theory of elasticity of quasicrystals and some relevant topics, in which the physical framework of elasticity is discussed first, the measuremental data of material constants for quasicrystals in solid phase are one of the most important basis to the theory and applications and are listed in detail. As the fundamental points, the analytic methods and exact solutions for various boundary value or boundary-initial value problems are summarized, the Chinese researchers contributed the effort in this respect. Apart from elasticity, dynamics and plasticity of the novel material are also discussed. At last the paper offers a simple description on a possible theoretical treatment, from the view point of elasticity and hydrodynamics, to quasicrystals in soft matter phase observed very recently.
-
1 Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 1984, 53(20): 1951-1953 2 Ye H Q, Wang D, Kuo K H. Five-fold symmetry in real and reciprocal space. Ultramicrossopy, 1985, 16(2): 273-277 3 Zhang Z, Ye H Q, Kuo K H. A new icosahedral phase with m35 symmetry. Phil. Mag. A, 1985, 52(6): L49-L52 4 Landau L D, Lifshitz M E. Theoretical Physics V: Statistical Physics, 3rd Edition, Pergamon Press, Oxford. 1980 5 Anderson P W. Basic Notations of Condensed Matter Physics, Menlo Park: Benjamin-Cummings, 1984 6 Einstein A. Die plackschen theorie der strahlung und die theorie der spezifischen waerme. Ann. d. Phys., 1907,22(4): 180-190 7 Debye P. Die Eigentuemlichkeit der spezifischen waermen bei tiefen temperaturen. Arch de Gen eve, 1912, 33(4):256-258 8 Born M, von Kármán Th. Zur theorie der spezifischen waermen. Physikalische Zeitschrift, 1913, 14(1): 15-19 Born M, Huang K. Dynamic Theory of Crystal Lattices, Clarendon Press, Oxford. 1954 9 Blinc B, Lavanyuk A P. Incommensurate Phases in Dielectrics I, II,. Amsterdam: North Holand, 1986 10 Penrose R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl., 1974,10: 266-271 11 Bak P. Phenomenological theory of icosahedral incommensurate (“quaisiperiodic”) order in Mn-Al alloys. Phys. Rev. Lett., 1985, 54(8): 1517-1519 12 Bak P. Symmetry, stability and elastic properties of icosahedral incommensurate crystals. Phys. Rev. B, 1985,32(9): 5764-5772 13 Levine D, Lubensky T C, Ostlund S, et al. Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett., 1985, 54(8): 1520-1523 14 Lubensky T C, Ramaswamy S, Toner J. Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B, 1985, 32(11):7444-7452 15 Lubensky T C, Ramaswamy S, Toner J. Dislocation motion in quasicrystals and implications for macroscopic properties. Phys. Rev. B, 1986, 33(11): 7715-7719 16 Lubensky T C, Socolar J E S, Steinhardt P J, et al. Distortion and peak broadening in quasicrystal diffraction patterns. Phys. Rev. Lett., 1986, 57(12): 1440-1443 17 Lubensky T C. Introduction to Quasicrystals, Boston: Academic Press, 1988 18 Kalugin P A, Kitaev A, Levitov L S. 6-dimensional properties of Al0:86Mn0:14 alloy. J. Phys. Lett., 1985, 46(13):601-607 19 Torian S M, Mermin D. Mean-field theory of quasicrystalline order. Phys. Rev. Lett., 1985, 54(14): 1524-1527 20 Jaric M V. Long-range icosahedral orientational order and quasicrystals. Phys. Rev. Lett., 1985, 55(6): 607-610 21 Duneau M, Katz A. Quasiperiodic patterns. Phys. Rev. Lett., 1985, 54(25): 2688-2691 22 Socolar J E S, Lubensky T C, Steinhardt P J. Phonons, phasons, and dislocations in quasicrystals. Phys. Rev. B,1986, 34(5): 3345-3360 23 Gahler F, Rhyner J. Equivalence of the generalised grid and projection methods for the construction of quasiperiodic tilings. J. Phys. A: Math. Gen., 1986, 19(2): 267-277 24 Ding D H, Yang W G, Wang R H, et al. Generalized elasticity theory of quasicrystals. Phys. Rev. B, 1993, 48(10):7003-7010 25 Janssen T. The symmetry operations for n-dimensional periodic and quasi-periodic structures. Zeitschrift fuer Kristall, 1992, 198(1): 17-32 26 Yang W G, Ding D H, Wang R H, et al. Phys. Rev. B,1994, 49: 12616-12621 27 Hu C Z, Wang R H, Ding D H. Rezoelectric effects in quasicrystals. Phys. Rev. B, 1997, 56: 2463-2468 28 Hu C Z, Wang R H, Ding D H. Symmetry groups physical property tensors, elastricity and disolcations in quasicrystals. Rep Prog Phys, 2000, 63(1): 1-39 29 Reynolds G A M, Golding B, Kortan A R, et al. Isotropic elasticity of the Al-Cu-Li quasicrystal. Phys. Rev. B,1990, 41(2): 1194-1195 30 Spoor P S, Maynard J D, Kortan A R. Elastic isotropy and anisotropy in quasicrystalline and cubic AlCuLi. Phys. Rev. Lett., 1995, 75(19): 3462-3465 31 Tanaka K, Mitarai, Koiwa M. Elastic constants of Albased icosahedral quasicrystals. Phil. Mag. A, 1996,73(6): 1715-1723 32 Duquesne J Y, Perrin B. Elastic wave interaction in icosahedral AlPdMn. Physics B, 2002. 316: 317-320 33 Foster K, Leisure R G, Shaklee A, et al. Elastic moduli of a Ti-Zr-Ni icosahedral quasicrystal and a 1/1 bcc crystal approximant. Phys. Rev. B, 1999, 59(17): 11132-11135 34 Schreuer J, Steurer W, Lograsso T A, et al. Elastic properties of icosahedral i-Cd84Yb16 and hexagonal h-Cd51Yb14. Phil. Mag. Lett., 2004, 84(10): 643-653 35 Sterzel R, Hinkel C, Haas A, et al. Ultrasonic measurements on FCI Zn-Mg-Y single crystals. Europhys. Lett.,2000, 49(6): 742-747 36 Letoublon A, de Boissieu M, Boudard M, et al. Phason elastic constants of the icosahedral Al-Pd-Mn phase derived from diffuse scattering measurements. Phil. Mag. Lett., 2001, 81(4): 273-283 37 de Boissieu M, Francoual S, Kaneko Y, et al. Diffuse scattering and phason fluctuations in the Zn-Mg-Sc icosahedral quasicrystal and its Zn-Sc periodic approximant. Phys. Rev. Lett., 2005, 95(10): 105503/1-4 38 Edagawa K, So GI Y. Experimental evaluation of phononphason coupling in icosahedral quasicrystals. Phil. Mag.,2007, 87(1): 77-95 39 Chernikov M A, Ott H R, Bianchi A, et al. Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: evidence for transverse elastic isotropy. Phys. Rev. Lett., 1998,80(2): 321-324 40 Jeong H C, Steinhardt P J. Finite-temperature elasticity phase transition in decagonal quasicrystals. Phys. Rev. B, 1993, 48(13): 9394-9403 41 Love A E H. A Treatise on the Mathematical Theory of Elasticity, 4th Edition, New York: Dover. 1944 42 Courant R, Hilbert D. Mathematical Physics Method, New York: Interscience, 1954 43 范天佑. 准晶数学弹性理论及应用. 北京: 北京理工大学出版社, 1999 44 Fan T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Beijing: Science Press/Heidelberg: Springer-Verlag, 2010 45 Peng Y Z, Fan T Y. Elastic theory of 1D quasiperiodic stacking of 2D crystals. J. Phys.: Condens. Matter, 2000,12(45): 9381-9387 46 Liu G T, Fan T Y, Guo R P. Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals. Int. J. Solid and Structures, 2004, 41(14):3949-3959 47 Chen W Q, Ma Y L, Ding H J. On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun., 2004, 31(5): 633-641 48 Wang X. The general solution of one-dimensional hexagonal quasicrystal. Appl. Math. Mech., 2006, 33(4): 576-580 49 Gao Y, Zhao Y T, Zhao B S. Boundary value problems of holomorphic vector functions in one-dimensional hexagonal quasicrystals. Physica B, 2007, 394(1): 56-61 50 Li X F, Fan T Y. New method for solving elasticity problems of some planar quasicrystals and solutions. Chin. Phys. Letter., 1998, 15(4): 278-280 51 Li X F, Fan T Y, Sun Y F. A decagonal quasicrystal with a Griffith crack. Phil Mag A, 1999, 79(8): 1943-1952 52 Li X F, Fan T Y, Sun Y F. Elastic field for a straight dislocation in a decagonal quasicrystal. J Phys.: Condens Matter, 1999, 11(3): 703-711 53 Guo Y C, Fan T Y. Mode II Griffith crack in decagonal quasicrystals. Appl. Math. Mech., English Edition. 2001,22(10): 1311-1317 54 Zhou W M, Fan T Y. Axisymmetric elasticity problem of cubic quasicrystal. Chinese Physics B, 2000, 9(4): 294-303 55 Zhou W M, Fan T Y. Plane elasticity and crack problem of octagonal quasicrystals. Chin. Phys., 2001, 10(6):277-284 56 Fan T Y, Guo L H. Final governing equation of plane elasticity of icosahedral quasicrystals. Phys. Lett. A, 2005,341(5): 235-239 57 Li L H, Fan T Y. Final governing equation of plane elasticity of icosahedral quasicrystals-stress potential method. Chin. Phys. Lett., 2006, 24(9): 2519-2521 58 De P, Pelcovits R A. Linear elasticity theory of pentagonal quasicrystals. Phys. Rev. B, 1987, 35(16): 8609-8620 59 Ding D H, Wang R H, Yang W G, et al. General for the elastic displacement fields induced by dislocations in quasicrystals. J. Phys: Condens Matter, 1995, 7(28): 5423-5436 60 Ding D H, Wang R H, Yang W G, et al. Elasticity theory of straight dislocations in quasicrystals. Phil. Mag. Lett.,1995, 72(2): 352-359 61 杨顺华, 丁棣华. 晶体位错理论, 第2卷. 北京: 科学出版社,1998 62 Yang W G, Ding D H, Feuerbacher U, et al. Atomtic model of dislocation in Al-Pd-Mn icosahedral quasicrystals. Phil. Mag. A, 1998, 77(6): 1481-1497 63 Zhu A Y, Fan T Y, Guo L H. A straight dislocation in an icosahedral quasicrystal. J. Phys.: Condens. Matter,2007, 19(23): 236216 64 Zhu A Y, Fan T Y. Elastic analysis of a Griffith crack in icosahedral Al-Pd-Mn quasicrystal. Int. J. Mod. Phys. B, 2009, 23(10): 1-16 65 Sneddon I N. Fourier Transforms. New York: McGrow-Hill, 1952
点击查看大图
计量
- 文章访问数:2028
- HTML全文浏览量:105
- PDF下载量:1642
- 被引次数:0