-
摘要:介绍了胞映射方法的研究和进展. 归纳了目前胞映射方法的几种主要研究方法, 主要包括简单胞映射、广义胞映射、图胞映射、图胞映射的符号分析方法、图胞映射的面向集合方法、邻接胞映射、庞加莱型的简单胞映射、插值胞映射以及胞参照点映射方法, 分析了各类方法的基本特点和特色, 简述了这几种胞映射方法的最新国内外进展, 综述了胞映射方法在控制及相关领域的应用研究及进展, 给出了胞映射方法研究的一些展望, 提出了胞映射方法研究可能率先突破的几个研究方向.Abstract:This paper presents brie y the research and development of cell mapping methods. Several main cell mapping methods are summarized, including simple cell mapping, generalized cell mapping, digraph cell mapping, symbolic analysis method of digraph cell mapping, set-oriented method of digraph cell mapping, adjoining cell mapping, Poincare-like simple cell mapping, interpolated cell mapping and point mapping under cell reference. For these methods, basic features and characteristics are analyzed, and both domestic and foreign research developments are outlined. Furthermore, the research developments of cell mapping method for control and related fields are presented. Finally, the paper suggests some research prospects and some directions that may first be broken through in the research field of cell mapping method.
-
1 Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983 2 Ott E. Chaos in Dynamical Systems. Cambridge: Cambridge University Press, 1993 3 Moon F C. Chaotic and Fractal Dynamics. New York: John Wiley & Sons, 1992 4 Wiggins S. Global Bifurcations and Chaos: Analytical Methods. Beijing: Springer-Verlag, 1990 5 Smale S. Differentiable dynamical systems. Bull. Amer. Math. Soc., 1957, 73: 747-753 6 张芷芬. 微分方程定性理论. 北京: 科学出版社, 1985 7 Parker T S, Chua L O. Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag, 1989 8 Hsu C S. A theory of cell-to-cell mapping dynamical systems. J. Applied Mechanics, 1980, 147: 931-939 9 Hsu C S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. New York: Springer-Verlag,1987 10 Hsu C S. Global analysis by cell mapping. Int. J. Bifurcation and Chaos, 1992, 2(4): 727-771 11 Hsu C S. Global analysis of dynamical systems using posets and digraphs. Int. J. Bifurcation and Chaos, 1995,5: 1085-1118 12 Hong L, Xu J X. Crises and chaotic transients studied by the generalized cell mapping digraph method. Phys. Lett. A, 1999, 262: 361-375 13 Hong L, Xu J X. Discontinuous bifurcations of chaotic attractors in forced oscillators by generalized cell mapping digraph (GCMD) method. Int. J. Bifurcation and Chaos,2001, 11: 723-736 14 Tongue B H, Gu K Q. Interpolated cell mapping of dynamical systems. J. Applied Mechanics, 1988, 55: 461-466 15 Golat M, Flashner H. A new methodology for the analysis of periodic systems. Nonlinear Dynamics, 2002, 28: 29-51 16 Jiang J, Xu J X. A method of point mapping under cell reference for global analysis of nonlinear dynamical systems. Phys. Lett. A, 1994, 188: 137-145 17 凌复华. 非线性动力学系统的数值研究. 上海: 上海交通大 学出版社, 1989 18 Hsu C S. A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. J. Applied Mechanics, 1981,48: 634-642 19 Bestle D, Kreuzer E. Modification and extension of an algorithm for generalized cell mapping. Computer Methods in Applied Mechanics and Engineering, 1986, 59: 1-9 20 Levitas J. Global stability analysis of fuzzy controllers using cell mapping methods. Fuzzy Sets and Systems, 1999,106: 85-97 21 徐健学, 洪灵. 全局分析的广义胞映射图论方法. 力学学报,1999, 31(6): 724-730 22 洪灵, 徐健学. 两参量平面上双重激变尖点研究. 物理学报,2002, 51(12): 2694-2701 23 Hong L, Sun J Q. Bifurcations of fuzzy nonlinear dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 2006, 11: 1-12 24 Hong L, Sun J Q. Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method. Chaos Solitions & Fractals, 2006, 27: 895-904 25 Hong L, Sun J Q. Codimension two bifurcations of nonlinear systems driven by fuzzy noise. Physica D, 2006, 213:181-189 26 Osipenko G. Dynamical Systems, Graphs, and Algorithms. Berlin: Springer-Verlag 2007 27 Osipenko G, Ayter S, Kobyakov S. The structure matrix of dynamical system: Tools for mathematical modeling. Mathematical Research, 2001, 8: 06-114 28 Osipenko G, Pehlivan S. Verification of structural stability, tools for mathematical modeling. Mathematical Research,2001, 8: 115-126 29 Osipenko G. Calculation of Lyapunov exponents by applied symbolic dynamics. International Journal of Nonlinear Sciences and Numerical Simulation, 2001, 2(1): 53-72 30 Osipenko G. Spectrum of a dynamical system and applied symbolic dynamics. Journal of Mathematical Analysis and Applications, 2000, 252: 587-616 31 Osipenko G, Campbell S. Applied symbolic dynamics: Attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5(1-2): 43-60 32 Dellnitz M, Hohmann A. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 1997, 75: 293-317 33 Dellnitz M, Junge O. In: Handbook of Dynamical Systems II: Towards Applications. Singapore: World Scientific,2002. 221-264 34 Dellnitz M, Froyland G, Junge O. Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Berlin: Springer, 2001. 145-174, 35 Dellnitz M, Junge O. An adaptive subdivision technique for the approximation of attractors and invariant measures. Comput. Visual. Sci., 1998, 1: 63-68 36 Dellnitz M, Junge O. Almost invariant sets in Chua's circuit. Int. J. Bifurcation and Chaos, 1997, 7(11): 2475-2485 37 Mehta P G, Hessel-von Molo M, Dellnitz M. Symmetry of attractors and the Perron-Frobenius operator. Journal of Difference Equations and Applications, 2006, 12(11):1147-1178 38 Sertl S, Dellnitz M. Global optimization using a dynamical systems approach. Journal of Global Optimization,2006, 34(4): 569-587 39 Dellnitz M, Junge O, Koon WS, et al. Transport in dynamical astronomy and multibody problems. Int. J. Bifurcation and Chaos, 2005, 15(3): 699-727 40 Dellnitz M, Sch¨utze O, Hestermeyer T. Covering pareto sets by multilevel subdivision techniques. Journal of Optimization, Theory and Applications, 2005, 124(1): 113-136 41 Day S, Junge O, Mischaikow K. A Rigorous numerical method for the global analysis of infinite dimensional discrete dynamical systems. SIAM Journal on Applied Dynamical Systems, 2004, 3(2): 117-160 42 Junge O, Osinga H. A set oriented approach to global optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 2004, 3(2): 259-270 43 Froyland G, Dellnitz M. Detecting and locating nearoptimal almost invariant sets and cycles. SIAM Journal on Scientific Computing, 2003, 24(6): 1839-1863 44 Dellnitz M, Schutze O, Sertl S. Finding zeros by multilevel subdivision techniques. Journal of Numerical Analysis,2002, 22(2): 167-185 45 Dellnitz M, Junge O, Thiere B. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems Series B, 2001, 1(1): 125-135 46 Froyland G, Junge O, Ochs G. Rigorous computation of topological entropy with respect to a finite partition. Physica D, 2001, 154: 68-84 47 Junge O. An adaptive subdivision technique for the approximation of attractors and invariant measures: Proof of convergence. Dynamical Systems, 2001, 16(3): 213-222 48 贺群, 徐伟, 李爽, 等. 图胞映射的一种改进方法. 物理学报,2008, 57(2): 743-748 49 贺群, 徐伟, 李爽, 等. 基于复合胞化空间的图胞映射方法. 物理学报, 2008, 57(7): 4021-4028 50 Yue X L, Xu W. Stochastic bifurcation of an asymmetric single-well potential Duffing oscillator under bounded noise excitation. International Journal of Bifurcation and Chaos, 2010, 20(10): 3359-3371 51 Xu W, Yue X L. Global analyses of crisis and stochastic bifurcation in the hardening Helmholtz-Duffing oscillator. Science China Technological Sciences, 2010, 53(3): 664-673 52 He Q, Xu W, Rong H W, et al. Stochastic bifurcation in duffing-van der pol oscillators. Physica A, 2004, 338:319-334 53 Xu W, He Q, Fang T, et al. Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise. International Journal of Non-Linear Mechanics, 2004, 39: 1473-1479 54 Xu W, He Q, Fang T, et al. Global analysis of stochastic bifurcation in Duffing system. International Journal of Bifurcation and Chaos, 2003, 13: 3115-3123 55 Zufiria P J, Guttalu R S. The adjoining cell mapping and its recursive unraveling, part one: description of adaptive and recursive algorithms. Nonlinear Dynamics, 1993, 4:207-226 56 Zufiria P J, Guttalu R S. The adjoining cell mapping and its recursive unraveling, part two: Application to selected problems. Nonlinear Dynamics, 1993, 4: 309-336 57 Sun J Q, Hsu C S. The generalized cell mapping method in nonlinear random vibration based upon short-time Gaus Gaussian approximation. J. Applied Mechanics, 1990, 57:1018-1025 58 Levitas J, Weller T, Singer J. Poincare-like simple cell mapping for nonlinear dynamical systems. J. Sound and Vibration, 1994, 176: 641-662 59 Levitas J, Weller T. Poincare linear interpolated cell mapping: method for global analysis of oscillating systems. J. Applied Mechanics, 1995, 62: 489-495 60 Hsu C S, Chiu H M. Global analysis of a system with multiple responses including a strange attractor. J. Sound and Vibration, 1987, 114: 203-218 61 Zhu W H, Wu Q T. New methods of determining the strange attractor by generalized cell mapping approach. Commun. Appl. Numer. Methods, 1988, 4: 543-548 62 Jiang J, Xu J X. An iterative method of point mapping under cell reference for the global analysis of nonlinear dynamical systems. J. Sound and Vibration, 1996, 194:605-621 63 Jiang J, Xu J X. An iterative method of point mapping under cell reference for the global analysis: Theory and a multiscale reference technique. Nonlinear Dynamics,1998, 15: 103-114 64 Guder R, Dellnitz M, Kreuzer E. An adaptive method for the approximation of the generalized cell mapping. Chaos, Solitons and Fractals, 1997, 8(4): 525-534 65 Tongue B H, Gu K Q. A higher order method of mapping. J. Sound and Vibration, 1988, 125: 169-179 66 文成秀, 姚玉玺, 闻邦椿. 动力系统的点映射胞映射综合 法. 振动工程学报, 1997, 10(4): 413-419 67 Tongue B H, Gu K Q. A theoretic basis for interpolated cell mapping. SIAM J. Applied Mathematics, 1988, A8:1206-1212 68 Tongue B H. On obtaining global nonlinear system characteristics through interpolated cell mapping. Physica D,1987, 28: 401-408 69 Tongue B H, Gu K Q. A higher order method of interpolated cell mapping. J. Sound and Vibration, 1988, 125:169-179 70 Whitf M T, Tongue R H. Application of interpolated cell mapping to analysis of the Lorenz equations. J. Sound and Vibration, 1995, 188(2): 209-226 71 Hsu C S. A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications, 1985, 46(4): 547-569 72 Bursal F H, Hsu C S. Application of a cell-mapping method to optimal control problems. International Journal of Control, 1989, 49: 1505-1522 73 Flashner H, Burns T F. Spacecraft momentum unloading: the cell mapping approach. Journal of Guidance, Control and Dynamics, 1990, 13: 89-98 74 Zhu W H, Leu M C. Planning optimal robot trajectories by cell mapping. In: Proceedings of Conference on Robotics and Automation, IEEE, New York, 1990. 1730-1735 75 Wang F Y, Lever P J A. A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robotics and Autonomous Systems, 1994, 12: 15-27 76 Yen J Y. Computer disk file track accessing controller design based upon cell to cell mapping. In: Proceedings of the American Control Conference, AACC, 1992 77 Crespo L G, Sun J Q. Solution of fixed final state optimal control problems via simple cell mapping. Nonlinear Dynamics, 2000, 23: 391-403 78 Crespo L G, Sun J Q. Optimal control of target tracking via simple cell mapping. Journal of Guidance, Control and Dynamics, 2000, 24: 1029-1031 79 Crespo L G, Sun J Q. Fixed final time optimal control via simple cell mapping. Nonlinear Dynamics, 2003, 31:119-131 80 Crespo L G, Sun J Q. Stochastic optimal control of nonlinear dynamic systems via bellman's principle and cell mapping. Automatica, 2003, 39: 2109-2114 81 Crespo L G, Sun J Q. Stochastic optimal control of nonlinear dynamic systems via short-time gaussian approximation and cell mapping. Nonlinear Dynamics, 2002, 28:323-342 82 Crespo L G, Sun J Q. Optimal control of populations of competing species. Nonlinear Dynamics, 2002, 27: 197-210 83 Chen Y Y, Tsao T C. Description of the dynamical behavior of fuzzy systems. IEEE Transactions on Systems, Man and Cybernetics, 1989, 19(4): 745-755 84 Yen J Y, Chao W C, Lu S S. Fuzzy cell mapping method for a sub-optimal control implementation. Control Engineering Practice, 1994, 2: 247-254. 85 Smith S M, Comer D J. Self-tuning of a fuzzy logic controller using a cell state space algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1990. 86 Smith S M, Corner D J. An algorithm for automated fuzzy logic controller tuning. In: Proceedings of IEEE International Conference on Fuzzy Systems, New York, 1992 87 Song F, Smith S M. Cell state space based incremental best estimate directed search algorithm for Takagi-Sugeno type fuzzy logic controller automatic optimization. In: Proceedings of the 9th IEEE International Conference on Fuzzy Systems. Taras, 2000 88 Song F, Smith S M, Rizk C G. Fuzzy logic controller design methodology for 4D systems with optimal global performance using enhanced cell state space based best estimate directed search method. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, 1999 89 Song F, Smith S M, Rizk C G. Optimized fuzzy logic controller design for 4D systems using cell state space technique with reduced mapping error. In: Proceedings of the IEEE International Fuzzy Systems Conference, South Korea, 1999 90 Edwards D, Choi H T. Use of fuzzy logic to calculate the statistical properties of strange attractors in chaotic systems. Fuzzy Sets and Systems, 1997, 88(2): 205-217 91 Sun J Q, Hsu C S. Global analysis of nonlinear dynamical systems with fuzzy uncertainties by the cell mapping method. Computer Methods in Applied Mechanics and Engineering, 1990, 83: 109-120 92 Baglio S, Fortuna L, Presti M L. Cube collect: A new strategy to make efficient the classical cell-to-cell algorithm. In: Proceedings of the American Control Conference, New York, 1995 93 Zufiria P J, Guttalu R S. Adjoining cell mapping and its recursive unraveling, Part I: Description of adaptive and recursive algorithms. Nonlinear Dynamics, 1993, 3: 207-225 94 Sun J Q. Random Vibrations of Nonlinear Systems Based upon the Cell State Space Concept. [Ph.D. Thesis] Berkeley: University of California, 1988
点击查看大图
计量
- 文章访问数:3803
- HTML全文浏览量:94
- PDF下载量:1820
- 被引次数:0