留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物神经元系统同步转迁动力学问题

王青云,张红慧

downloadPDF
王青云, 张红慧. 生物神经元系统同步转迁动力学问题[J]. 力学进展, 2013, 43(1): 149-162. doi: 10.6052/1000-0992-12-023
引用本文: 王青云, 张红慧. 生物神经元系统同步转迁动力学问题[J]. 力学进展, 2013, 43(1): 149-162.doi:10.6052/1000-0992-12-023
WANG Qingyun, ZHUANG Honghui. ADVANCES OF SYNHRONIZATION TRANSITION IN NUERONAL NETWORKS[J]. Advances in Mechanics, 2013, 43(1): 149-162. doi: 10.6052/1000-0992-12-023
Citation: WANG Qingyun, ZHUANG Honghui. ADVANCES OF SYNHRONIZATION TRANSITION IN NUERONAL NETWORKS[J].Advances in Mechanics, 2013, 43(1): 149-162.doi:10.6052/1000-0992-12-023

生物神经元系统同步转迁动力学问题

doi:10.6052/1000-0992-12-023
基金项目:国家自然科学基金面上项目(11172017)资助
详细信息
    作者简介:

    王青云, 现任北京航空航天大学动力学与控制学科教授, 博士生导师. 近年来在非线性神经动力学和复杂网络动力学研究领域取得了有特色的研究成果. 曾先后主持国家自然基金面上项目3 项, 教育部新世纪人才支持计划项目1 项, 作为主要参与人参加国家自然基金重点项目1 项以及主持其它省部级项目等多项课题. 已在国内外核心学术期刊发表学术论文70 余篇, 论文被SCI 收录56 篇,研究成果被国内外学术界同行高度评价和广泛引用, 研究成果被SCI 他引600 余次. 2008 年由科学出版社出版学术著作一本. 2011 年入选教育部新世纪人才支持计划, 2009 年获全国百篇优秀博士论文提名奖, 2009 年获内蒙古自治区第七届青年科技奖, 2008 年入选内蒙古自治区321 人才第2 层次人选.

    通讯作者:

    王青云

  • 中图分类号:O415.6

ADVANCES OF SYNHRONIZATION TRANSITION IN NUERONAL NETWORKS

Funds:The project was supported by the National Natural Science Foundation of China (11172017).
More Information
    Corresponding author:WANG Qingyun
  • 摘要:生物神经元系统中存在着丰富的同步模式, 不同同步模式的实现条件已经被广泛地研究. 然而, 不同同步模式之间的转迁是神经动力学研究领域的难点问题, 近年来在此方面开展了许多相应的研究工作. 本文主要阐述近年来在神经元系统同步转迁动力学方面的研究进展, 揭示神经元系统在耦合、时滞和网络拓扑等不同参数作用下呈现的复杂的同步转迁动力学行为及其可能的动力学机制. 最后总结研究进展的内容并提出对同步动力学今后研究的展望.

  • 1 Gray C M, Konig P, Engel A K, et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 1989, 338: 334-337
    2 Steinmeta P N, Roy A, Fitzgerald P J, et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 2000, 404: 187-190
    3 Fell J, Fernandez G, Klaver P, et al. Is synchronized neuronal gamma activity relevant for selective attentions. Brain Research Reviews, 2003, 42: 265-272
    4 Bahar S, Moss F. Stochastic resonance and synchronization in the crayfish caudal photoreceptor. Biosciences,2004, 188: 81-97
    5 Terman D, Kopell N, Bose A. Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 1998, 117(1):241-275
    6 Rubin J, Terman D. Geometric analysis of neuronal firing patterns in network models with fast inhibitory synapses. Neurocomputing, 1999, 26-27: 491-498
    7 Terman D, Ahn S, Wang X Y, et al. Reducing neuronal networks to discrete dynamics. Physica D, 2008, 237: 324-338
    8 Yoshioka M. Cluster synchronization in an ensemble of neurons interacting through chemical synapses. Phys. Rev. E, 2005, 71: 061914
    9 Shi X, Lu Q S. Complete synchronization of coupled Hindmarsh-Rose neurons with ring structure. Chin. Phys. Lett., 2004, 21: 1695-1698
    10 Wang Q Y, Lu Q S, Chen G R, et al. Chaos synchronization of coupled neurons with gap junctions. Phys. Lett. A, 2006, 356: 17-25
    11 Wang Q Y, Duan Z S, Huang L, et al. Pattern formation and firing synchronization in networks of map neurons. New J. Phys, 2007, 9(383): 1-11
    12 Belykh I, de Lange E, Hasler M. Synchronization of bursting neurons: What matters in the network topology. Phys. Rev. Lett., 2005, 94:188101
    13 Kopell N, Ermentrout B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. USA,2004, 101: 15482-15487
    14 Kwon O, Moon H T. Coherence resonance in small-world networks of excitable cells. Phys. Lett. A, 2002, 298:319-324
    15 Wang Q Y, Duan Z S, Perc M, et al. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability. Europhys. Lett., 2008, 83: 50008
    16 Tanakaa G, Ibarz B, Sanjuan MAF, et al. Synchronization and propagation of bursts in networks of coupled map neurons. Chaos, 2006, 16: 013113
    17 Zhou C S, Zemanov L, Zamora G, et al. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett., 2006, 97: 238103
    18 Leyva I, Sendi?na-Nadal I, Almendral JA, et al. Sparse repulsive coupling enhances synchronization in complex networks. Phys Rev E, 2006, 74: 056112
    19 Wang R B, Zhang Z K. Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Transactions on Neural Networks, 2011,22(7): 1097-1106
    20 Wang R B, Zhang Z K, Tee C K. Neurodynamics analysis on transmission of brain information. Applied Mathematics and Mechanics, 2009, 30(11): 1415-1428
    21 Wang R B, Jiao X F. A stochastic nonlinear evolution model and neural coding on neuronal population possessing variable coupling intensity in spontaneous behavior. Neurocomputing, 2006, (7-9): 778-785
    22 陆启韶, 刘深泉, 刘锋, 等. 生物神经网络系统动力学与功能 研究. 力学进展, 2008, 38(6): 766-793.
    23 Dhamala M, Jirsa V K, Ding M Z. Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett.,2004, 92 : 02810
    24 Wang Q Y, Duan Z S, Feng Z S, et al. Synchronization transition in gap-junction-coupled leech neurons. Physica A, 2008, 387 (16-17): 4404-4410
    25 Wang Q Y, Lu Q S, Chen G R. Ordered bursting synchronization and complex wave propagation in a ring neuronal network. Physica A, 2007, 374: 869-878
    26 Shen Y, Hou Z H, Xin H W. Transition to burst synchronization in coupled neuron networks. Phys Rev E, 2008,77: 031920
    27 Sun X J, Lei J Z, Perc M, et al. Burst synchronization transitions in a neuronal network of subnetworks. Chaos,2011, 21: 016110
    28 Dhamala M, Jirsa V K, Ding M Z. Enhancement of neural synchrony by time delay. Phys. Rev. Lett., 2004, 92:074104
    29 Wang Q Y, Lu Q S. Time-delay enhanced synchronization and regularization in two coupled chaotic ML neurons. Chin. Phys. Lett., 2005, 22: 543-546
    30 Wang Q Y, Lu Q S, Chen G R. Synchronization transition induced by synaptic delay in coupled fast spiking neurons. International Journal of Bifurcation and Chaos, 2008,18(4): 1189-1198
    31 Wang Q Y, Chen G R, Perc M. Synchronous bursts on scale-Free neuronal networks with attractive and repulsive coupling. PLoS ONE, 2011, 6(1): e15851
    32 Wang Q Y, Chen G R. Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapses. Chaos, 2011, 21(1): 013123
    33 Wang Q Y, Lu Q S, Chen G R, et al. Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos, Solitons & Fractals, 2009, 39(2): 918-925
    34 Adhikari B M, Prasad A. Time-delay-induced phasetransition to synchrony in coupled bursting neurons. Chaos, 2011, 21: 023116
    35 Mancilla J G, Lewis T J, Pinto D J, et al. Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci, 2007, 27: 2058-2073
    36 Gibson J R, Beierlein M, Connors B W. Two networks of electrically coupled inhibitory neurons in neocortex. Journal of Computational Neuroscience, 2005, 18: 287-295
    37 Gao J, Holmes P. On the dynamics of electrically-coupled neurons with inhibitory synapses. Journal of Computational Neuroscience, 2007, 22: 39-61
    38 Verheijck E E, Wilders R, Joyner R W, et al. Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol., 1998, 111(1): 95-112
    39 Audesirk G, Audesirk T, Bowsher P. Variability and frequent failure of Lucifer yellow to pass between two electrically coupled neurons in Lymnaea stagnalis. Journal of Neurobiology, 1982, 13(4): 369-375
    40 Venance L, Rozov A. Connexin expression in electrically coupled postnatal rat brain neurons. PNAS, 2000, 97 (18): 10261-10265
    41 Wang Q Y, Lu Q S, Wang H X. Transition to complete synchronization via near-synchronization in two coupled chaotic neurons. Chinese Physics, 2005, 14: 2189-2195
    42 Balenzuela P, García-Ojalvo J. Role of chemical synapses in coupled neurons with noise. Physical Review E, 2005,72: 021901
    43 Lang M, Marquez-Lago TT, Stelling J, et al. Autonomous synchronization of chemically coupled synthetic oscillators. Bull Math Biol, 2011, 73(11): 2678-706
    44 Franovic I, Miljkovic V. Power law behavior related to mutual synchronization of chemically coupled map neurons. Eur. Phys. J. B, 2010, 76: 613-624
    45 Shi X, Lu Q S. Burst synchronization of electrically and chemically coupled map-based neurons. Physica A, 2009,388: 2410-2419
    46 Lysetskiy M, Zurada J M. Bifurcating neuron: Computation and learning. Neural Networks, 2004, 17: 225-232
    47 Wang Q Y, Sanjuan Miguel AF, Chen G R. Transition of phase locking modes in a minimal neuronal network. Neurocomputing, 2012, 81: 60-66
    48 Sato Y D, Okumura K, Ichiki A, et al. Temperaturemodulated synchronization transition in coupled neuronal oscillators. Physical Review E, 2012, 85: 031910
    49 Yin H B, Cox C L, Mehta P G, et al. Bifurcation analysis of a thalamic relay neuron model. In: Proc. American Control Conference, St. Louis, MO, USA, 2009
    50 Tsumoto K, Yoshinaga T, Kawakami H. Bifurcations of synchronized responses in synaptically coupled Bonhoffervan der Pol neurons. Physical Review E, 2002, 65: 036230
    51 Wang H X, Lu Q S, Wang Q Y. Bursting and synchronization transition in the coupled modified ML neurons. Communications in Nonlinear Science and Numerical Simulation, 2008, 13: 1668-1675
    52 Postnova S, Voigt K, Braun H A. Neural synchronization at tonic-to-bursting transitions. J Biol Phys, 2007,33:129-143
    53 Yu H, Wang J, Liu Q, et al. Chaotic phase synchronization in a modular neuronal network of small-world subnetworks. Chaos, 2011, 21(4): 043125
    54 Yassin L, Benedetti Brett L. An embedded subnetwork of highly active neurons in the neocortex. Neuron, 2010, 68:1043-1050
    55 Tang J, Ma J, Yi M, et al. Delay and diversity-induced synchronization transitions in a small-world neuronal network. Physical Review E, 2011, 83: 046207
    56 Wang Q Y, Aleksandra M, Perc M, et al. Taming desynchronized bursting with delays in the Macaque cortical network. Chin. Phys. B, 2011, 20 (4): 040504
    57 Cui J, Canavier C C, Butera R J. Functional phase response curves: A method for understanding synchronization of adapting neurons. Journal of Neurophysiology, 2009, 102(1), 387-398
    58 Galan R F, Ermentrout, G B, Urban N N. Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letters, 2005, 94(15), 158101
    59 Galan R F, Bard Ermentrout G, Urban N N. Predicting synchronized neural assemblies from experimentally estimated phase-resetting curves. Neurocomputing, 2006,69(10-12): 1112-1115
    60 Winfree A T. The Geometry of Biological Time. New York: Springer Verlag, 1980, 530
    61 Canavier C C, Gurel Kazanci F, Prinz A A. Phase resetting curves allow for simple and accurate prediction of robust N:1 phase locking for strongly coupled neural oscillators. Biophys. J., 2009, 97: 59-73
    62 Canavier C C. The application of phase resetting curves to the analysis of pattern generating circuits containing bursting neurons. In: Coombes S, Bressloff P, eds. Bursting: The Genesis of Rhythm in the Nervous System. Singapore: World Scienti c, 2005. 175-200
    63 Smeal R M, Ermentrout G B, White J A. Phase-response curves and synchronized neural networks. Philosophical Transactions of the Royal Society B-Biological Sciences,2010, 365(1551): 2407-2422
  • 加载中
计量
  • 文章访问数:2140
  • HTML全文浏览量:78
  • PDF下载量:1968
  • 被引次数:0
出版历程
  • 收稿日期:2012-02-28
  • 修回日期:2012-02-28
  • 刊出日期:2013-01-24

目录

    /

      返回文章
      返回

        Baidu
        map