ADVANCES IN THE RESEARCH ON “INERTIAL FOCUS OF PARTICLES” AND ITS APPLICATION IN MICROFLUIDICS
-
摘要:当随机散布细颗粒的流体以低 Re数层流流入直管时, 经过一段距离的流动后, 这些颗粒会被稳定地聚集在一个离管道中心固定距离的同心圆环位置上运动. 这种运动特征被称为颗粒“惯性聚集”现象. 该现象表明: 在相应的 Re数管流中, 颗粒除受到流体沿主流方向的驱动力同时, 还受到垂直于主流的横向力的作用. 这种横向力是使颗粒产生聚集运动现象的主要原因, 被认为是由于流场的惯性力对颗粒的作用.Abstract:When a flow with randomly dispersed small particles enters a straight pipe at low Reynolds numbers, the particles may migrate to an annulus centered at the axis of the pipe after a migration distance. This migration is called as ‘Inertial Focus of Particles’, which indicates that in the creeping flow there are transverse forces exerted on the immersed particles apart from viscous drags. It is the transverse force that results in the phenomenon, and it is usually regarded as an effect of the inertial force of the flow field on the particles. Recently, the phenomenon is attracting the attention of more and more researchers. Further research on it will not only reveal the interesting dynamic behaviors of both particles and colloids in a micro-channel and organisms in a blood vessel, but also assist us in the exploitation of such separation technology with high efficiency and low energy consumption. This paper summarizes recent advances in this area and presents some suggestions for future research.
-
1 Segre G, Silberberg A. Radial particle displacements in Poiseuille flow of suspension. Nature, 1961, 189: 209-210 2 Carlo D D. Inertial microfluidics. Lab Chip, 2009, 9: 3038-3046 3 Carlo D D, Edd J F, Humphry K J, et al. Particle segregation and dynamics in confined flow. Phys. Rev. Lett.,2009, 102: 094503-4 4 严宗毅. 低雷诺数流理论. 北京: 北京大学出版社, 2002. 40-48 5 Chwang A T, Wu Y T. Hydrodynamics of low-Reynoldsnumber flow, part2, singularity method for stokes flows. J Fluid Mech., 1975, 67: 787-815 6 刘大有. 两相流体动力学. 北京: 高等教育出版社, 1993. 25-33 7 车得福, 李会雄. 多相流及其应用. 西安: 西安交通大学出版 社, 2007. 80-83 8 李战华, 吴健康, 胡国庆, 等. 微流控芯片中的流体流动. 北 京: 科学出版社, 2012. 190-192 9 Lumma D, Best A, Gansen A, et al. Flow profile near a wall measured by double-focus fluorescence crosscorrelation. Phys. Rev. E, 2003, 67: 056313 10 Joseph P, Tabeling P. Direct measurement of the apparent slip length. Phys. Rev. E, 2005, 71: 035303 11 Lauga E. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. Langmuir, 2004,20: 8924-8930 12 Saffman P G. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 1965, 22: 385-400 13 Ho B P, Leal L G. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.,1974, 65: 365-400 14 Schonberg J A, Hinch E J. Inertial migration of a sphere in Poiseuille flow. J. Mech. Fluid Mech., 1989, 203: 517-524 15 Asmolov E S. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech., 1999, 381: 63-87 16 Osiptsov A, Asmolov E S. Asymptotic model of the inertial migration of particles in a dilute suspension flow through the entry region of a channel. Phys. Fluids, 2008,20: 123301 17 Chan P C H, Leal L G. The motion of a deformable drop in a second-order fluid. J. Fluid Mech., 1979, 92: 131-170 18 Haper S, Hetsroni G. The dynamics of a deformable drop suspended in as unbounded stokes flow. J. Fluid Mech.,1971, 84: 241-257 19 Zhao Y, Sharp M K. Finite element analysis of the lift on a slightly deformable and freely rotating and translating cylinder in two-dimensional channel flow. J. Biomech. Eng., 1999, 121: 148-152 20 Matas J, Morris J F, Guazzelli E. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech.,2004, 515: 171-195 21 Cho B R, Kim Y W. Lateral migration of neutrallybuoyant particles in a square microchannel at low Reynolds number. In: Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado USA, 2009 22 Chun B, Ladd A J C. Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids., 2006, 18: 031704 23 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Inertial microfluidics for continuous particle filtration and extraction. Micro uid Nano uid., 2009, 7: 217-226 24 Hur S C, Choi S E, Kwon S, et al. Inertial focusing of non-sperical microparticles. Phys. Rev. Lett., 2011, 99:044101-3 25 Cho S H, Choi H G, Yoo J Y. Direct numerical simulation of fluid flow laden with many particles. J. Multi. Flow,2005, 31: 435-451 26 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Enhanced particle filtration in straight microchannels using shear modulated inertial migration. Phys. Fluids, 2008,20: 101702-4 27 Edd J F, Carlo D D, Humphry K J, et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip, 2008, 8: 1262-1264 28 Park J, Song S, Jung H. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab. Chip, 2009, 9: 939-948 29 Wu Z, Willing B, Bjerketorp J, et al. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip, 2009, 9: 1193-1199 30 Berger S A, Talbot L, Yao L S. Flow in curved pipes. Annu. Rev. Fluid Mech., 1983, 15: 461-512 31 Squires T M, Quake S R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, 77: 977 32 Gossett D R, Carlo D D. Particle focusing mechanisms in curving confined flows. Anal. Chem., 2009, 81: 8459-8465 33 Seo J, Lean M H, Kole A. Membrane-free microfiltration by asymmetric inertial migration. Appl. Phys. Lett.,2007, 91: 033901-3 34 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip, 2008,8: 1906-1914 35 Seo J, Lean M H, Kole A. Membraneless microseparation by asymmetry in curvilinear laminar flows. J. Chro- matogr., A, 2007, 1162: 126-131 36 Oozeki N, Ookawara S, Ogawa K, et al. Characterization of microseparator/classifier with a simple arc microchannel. AIChE J., 2009, 55: 24-34 37 Carlo D D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U. S. A., 2007,104: 18892-18897 38 Carlo D D, Edd J F, Irimia D, et al. Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem., 2008, 80: 2204-2211 39 Kuntaegowdanahalli S S, Bhagat A A S, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip, 2009, 9: 2973-2980 40 黄炜东, 张何, 徐涛, 等. 基于惯性微流原理的微流控芯片用 于血浆分离. 科学通报, 2011, 56(21): 1711-1719 41 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用. 化 学进展, 2011, 23(9): 1945-1958
点击查看大图
计量
- 文章访问数:2229
- HTML全文浏览量:118
- PDF下载量:1119
- 被引次数:0