-
摘要:实施月球表面探测时, 月表尘埃物质容易在探测设备表面沉积并造成严重不利影响. 近年来交变电场 除尘方法被认为是在月表进行尘埃防护的有效手段, 但要使该方法实用化, 仍需要弄清除尘的机理, 确定相关 影响的因素, 以便进行优化设计. 本文从实现交变电场的电帘出发, 分别介绍电帘表面的交变电场分布、颗粒 在电帘表面的受力状态、颗粒群运动过程中的摩擦电荷分布、颗粒运动的模拟方法、颗粒运动过程、除尘效 率和能耗的理论和实验研究, 并对自清洁太阳能电池板系统的设计与制备进行了总结. 对颗粒的起跳过程、静 电的生成和除尘效率影响因素等普遍关注的问题进行了细致的讨论和总结, 指出了颗粒的带电量对起跳过程 的关键作用. 最后, 对该除尘防尘存在的问题进行了归纳, 并展望了该领域的发展趋势.Abstract:The adhesive dust particles on lunar surface can easily deposit on surfaces of detecting devices, which poses serious problems for moon surface explorations. Dust removal by electrodynamic field is recently considered as an effective method to mitigate dust pollution for future lunar or Mars surface missions. However, lack of full understanding about the mechanism of dust removal limits practical applications of this technique. In this paper, the realization of electrodynamic field by electric curtain (EC) is firstly introduced, then electric field distribution and forces acting on the particles along the EC surface, tribo-charge distribution during particle flow movement, particle movement simulation methods, dust removal efficiency and energy consumption of EC have been discussed. Particle initial leaping processes, generation of tribo-charge within particle flows and factors influencing the dust removal efficiency have been explained and analyzed in detail. The emphasis is also placed on the contribution of static particle charge to its initial leaping process. At last, the future trend of this technique has also been discussed.
-
1 Rennilson J, Criswell D. Surveyor observations of lunar horizon glow. Earth, Moon and Planets, 1973, 10(2): 121-142 2 McCoy J, Criswell D. Evidence for a high altitude distribution of lunar dust. In: Proc. 5th Lunar Science Conference, Houston, Tex, 1974 3 Park J, Liu Y, Kihm K D, et al. Characterization of lunar dust for toxicological studies I: particle size distribution. Journal of Aerospace Engineering, 2008, 21(4): 266-271 4 Heiken G, Vaniman D, French B M, et al. Lunar Source Book: A User’s Guide to The Moon. Cambridge: Cambridge University Press, 1991 5 Sickafoose A A, Colwell J E, Horányi M, et al. Experimental investigations on photoelectric and triboelectric charging of dust. Journal of Geophysical Research, 2011,106(45): 8343-8356 6 Pelizzari M A, Criswell D R. Lunar dust transport by photo-electric charging at sunset. In: Proc. Lunar Planet. Sci. Conf. 9th, 1978, 3: 3225 7 Walbridge E. Lunar photoelectron layer. Journal of Geo- physical Research, 1973, 78(??): 3668-3687 8 欧阳自远. 月球科学概论. 北京: 中国宇航出版社, 2005 9 Walton O R. Adhesion of lunar dust. 2007 NASA/CR—2007-214685 10 Gold T, Williams G J. Electrostatic transportation of dust on the moon, photon and particle interactions with surfaces in space. Astrophysics and Space Science Library,1973, 37: 557 11 Bates J R, Fang P H. Results of solar cell performance on lunar base derived from Apollo missions. Solar Energy Materials Solar Cells, 1992, 26(1-2): 79-84 12 Carroll W F, Blair P M. Spacecraft changes: Lunar dust and radiation darkening of surveyor 3 surfaces. Analysis of surveyor 3 Material and photographs, 1971, N72 26731:23 13 Gaier J R. The effects of lunar dust on eva systems during the apollo missions. 2005, NASA/TM—2005-213610 14 Wood K. Design of equipment for lunar dust removal.1991, NASA2CR-190014 15 Tatom F B, Srepel V, Johnson R D, et al. Lunar dust degradation effects and removal/prevention concepts. Northrop/Huntsville Technical Report, 1967, 321 16 Sims R A, Biris A S, Wilson J D, et al. Development of a transparent self-cleaning dust shield for solar panels. In: Proceedings of the First Joint Meeting IEEE-IAS and Electrostatics Society of America, Pasadena, California,2000: 814 17 Calle C I, Buhler C R, Mantovani J G, et al. Electrodynamic shield to remove dust from solar panels on Mars. In: Proceedings of the 41st Space Congress, Cape Canaveral,2004 18 Calle C I, McFall J L, Buhler C R, et al. Dust particle removal by electrostatic and dielectrophoretic forces with applications to NASA exploration missions. In: Proc. ESA Annual Meeting on Electrostatics, Minneapolis, USA, 2008 19 Calle C I, Mazumder M K, Immer C D, et al. Controlled particle removal from surfaces by electrodynamic methods for terrestrial, lunar and martian environmental conditions. Journal of Physics: Conference Series, 2008,012073 20 Masuda S. Advances in Static Electricity. Brussels: Auxilia,1970 21 Kawamoto H. Electrostatic transport and manipulation of lunar soil and dust. AIP Conference Proceedings, 2008,969(1): 203-212 22 Kawamoto H, Seki K, Kuromiya N. Mechanism of travelling-wave transport of particles. Journal of Physics D: Applied Physics, 2006, 39(6): 1249-1256 23 Kawamoto H. Electrostatic and electromagnetic cleaning of lunar dust adhered to spacesuits. In: Annual Meeting of LEAG, Houston, Texas, 2009 24 Atten P, Pang H L, Reboud J. Study of dust removal by standing wave electric curtain for application to solar cells on Mars. IEEE Transactions on Industry Applications,2009, 45(1): 75-86 25 Mazumder M K, Sims R A, Wilson J D. Transparent selfcleaning dust shield. U.S. Pat. Appl. Publ. 20040055632,2004 26 Moesner F M, Higuchi T. Traveling electric field conveyor for contactless manipulation of microparts, In: IEEE Industry Applications Society Annual Meeting, 1997, 3:2004-2011 27 曹红杏, 阮萍, 李婷, 等. 光学系统的月尘防护方法综述. 科 学技术与工程, 2007, 20(7):5310-5315 28 石晓波, 李运泽, 黄勇, 等. 月尘/月壤环境效应地面模拟方 法研究. 空间科学学报, 2007, 27(1): 66-71 29 刘雪峰. 月尘防护原理研究: [学士论文]. 北京: 北京理工大 学, 2008 30 袁亚飞, 刘民, 析向春. 电帘除尘技术的研究现状. 航天器工 程, 2010,19(5):89-94 31 袁亚飞, 刘民, 杨亦强. 火星太阳电池翼除尘方法综述. 航天 器环境工程, 2010, (5): 604-607 32 Hemstreet J M. Velocity distribution on the Masuda panel. Journal of Electrostatics, 1985, 17(3): 245-254 33 Liu G, Marshall J S. Particle transport by standing waves on an electric curtain. Journal of Electrostatics, 2010,68(4): 289-298 34 Mazumder M K, Sharma R, Biris A S, et al. Self-cleaning transparent dust shields for protecting solar panels and other devices. Particulate Science and Technology, 2007,25(1):5-20 35 Masuda S, Washizu M, Iwadare M. Separation of small particles suspended in liquid by nonuniform traveling field. IEEE Transactions on Industry Applications, 1987, 23(3):474-480 36 Masuda S, Tsutomu K. Approximate methods for calculating a non-uniform travelling field. Journal of Electro- statics, 1975, 1(4): 351-370 37 孙旗霞, 杨宁宁, 肖志坤, 等. 驻波电帘除尘效率的实验研究. 航天器工程, 2012, 21(3): 72-79 38 Machowski W, Balachandran W. Electrodynamic control and separation of charged particles using travelling wave field technique. Journal of Electrostatics, 1997, 40-41:325-330 39 Liu Y, Park J, Schnare D, et al. Characterization of lunar dust for toxicological studies. II: Texture and shape characteristics. Journal of Aerospace Engineering, 2008,21(4): 272-279 40 Jones T B. Electromechanics of Particles. Cambridge: Cambridge University Press, 1995 41 Landau L D, Lifshitz E M. Electrodynamics of Continuous Media. Oxford: Butterworth-Heinemann Ltd, 1984 42 Lowell J, Truscott W S. Triboelectrification of identical insulators: II. Theory and further experiments. Journal of Physics D: Applied Physics,1986, 19(7): 1281-1298 43 Kok J F, Lacks D J. Electrification of granular systems of identical insulators. Physical Review E, 2009, 79(5):051304 44 Lacks D J, Duff N. Nonequilibrium accumulation of surface species and triboelectric charging in single component particulate systems. Physical Review Letters, 2008,100(18): 188305 45 Lacks D J, Levandovsky A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. Journal of Electrostatics, 2007, 65(2):107-112 46 Duff N, Lacks D J. Particle dynamics simulations of triboelectric charging in granular insulator systems. Journal of Electrostatics, 2008, 66(1-2): 51-57 47 Forward K M, Lacks D J, Sankaran R M. Charge segregation depends on particle size in triboelectrically charged granular materials. Physical Review Letters, 2009, 102(2):028001 48 Zon R V, Cohen E G D. Theorem on the distribution of short-time particle displacements with physical applications. Journal of Statistical Physics, 2006, 123(1): 1-37 49 Forward K M, Lacks D J, Sankaran R M. Triboelectric charging of lunar regolith simulant. Journal of Geophysi- cal Research, 2009, 114: A10109-A10111 50 Greason W D. Investigation of a test methodology for triboelectrification. Journal of Electrostatics, 2000, 49(3-4):245-256 51 Dudzicz Z. The path of oscillation of dust particles in the field of the electric curtain of the plane type supplied with AC voltage. Journal of Electrostatics, 1989, 23: 207-214 52 Liu G Q, Marshall J S. Effect of particle adhesion and interactions on motion by traveling waves on an electric curtain. Journal of Electrostatics, 2010, 68(2): 179-189 53 Kawamoto H, Miwa T. Mitigation of lunar dust adhered to mechanical parts of equipment used for lunar exploration. Journal of Electrostatics, 2011, 69(4): 365-369 54 Kawamoto H, Uchiyama M, Cooper B L, et al. Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave. Journal of Electrostatics,2011, 69(4): 370-379 55 Huang N, Yue G W, Zheng X J. Numerical simulations of a dust devil and the electric field in it. Journal of Geo- physical Research, 2008, 113:D20203 56 Sun Q, Yang N, Cai X B, et al. Mechanism of dust removal by a standing wave electric curtain. Science China Physics, Mechanics & Astronomy, 2012, 55(6): 1018-1025 57 Calle C I, Buthler C R. Electrodynamic dust shield for solar panels on Mars. In: Lunar and Planetary Science XXXV, League City, Texas, 2004 58 Biris A S, Saini D. Electrodynamics removal of contaminant particles and its application. In: Conference Record of the 2004 IEEE, IAS, 2004 59 Calle C I, McFall J M, Buhler C R, et al. Development of an active dust mitigation technology for lunar exploration. In: AIAA Space Conference & Exposition, California,2008 60 Dudzicz Z. Recording of dust particle oscillation path inside electric curtain by laser diode apparatus. Optica Ap- plicata, 2005, 35(4): 907-912 61 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质. 矿物岩石, 2004, 24(4): 14-19 62 郑永春. 模拟月壤研制与月壤的微波辐射特性研究: [博士论文]. 贵阳: 中国科学院地球化学研究所, 2005 63 Zheng Y, Wang S, Ouyang Z, et al. CAS-1 lunar soil stimulant. Advances in Space Research, 2009, 43(3): 448-454 64 Watanabe H, Ghadiri M, Matsuyama T, et al. New instrument for tribocharge measurement due to single particle impacts. Review of Scientic Instruments, 2007, 78(2):024706-024710
点击查看大图
计量
- 文章访问数:1811
- HTML全文浏览量:111
- PDF下载量:2268
- 被引次数:0