留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运载火箭结构动力学模拟技术研究进展

潘忠文,曾耀祥,廉永正,邢誉峰

downloadPDF
潘忠文, 曾耀祥, 廉永正, 邢誉峰. 运载火箭结构动力学模拟技术研究进展[J]. 力学进展, 2012, 42(4): 406-415. doi: 10.6052/1000-0992-12-063
引用本文: 潘忠文, 曾耀祥, 廉永正, 邢誉峰. 运载火箭结构动力学模拟技术研究进展[J]. 力学进展, 2012, 42(4): 406-415.doi:10.6052/1000-0992-12-063
PAN Zhongwen, ZENG Yaoxiang, LIAN Yongzheng, XING Yufeng. REVIEWS IN STRUCTURAL DYNAMICS ANALOGY TECHNIQUE OF LAUNCH VEHICLE[J]. Advances in Mechanics, 2012, 42(4): 406-415. doi: 10.6052/1000-0992-12-063
Citation: PAN Zhongwen, ZENG Yaoxiang, LIAN Yongzheng, XING Yufeng. REVIEWS IN STRUCTURAL DYNAMICS ANALOGY TECHNIQUE OF LAUNCH VEHICLE[J].Advances in Mechanics, 2012, 42(4): 406-415.doi:10.6052/1000-0992-12-063

运载火箭结构动力学模拟技术研究进展

doi:10.6052/1000-0992-12-063
基金项目:总装备部十一五预研项目(51320103), 航天支撑项目(618010604-02), 国防“973” 项目(613133) 资助
详细信息
    通讯作者:

    潘忠文

REVIEWS IN STRUCTURAL DYNAMICS ANALOGY TECHNIQUE OF LAUNCH VEHICLE

Funds:The project was supported by the Eleventh Five General Armament Department Advanced Research Project (51320103), Space-Support Project (618010604-02) and 973 National Defense Project (613133).
More Information
    Corresponding author:PAN Zhongwen
  • 摘要:本文首先按照火箭的不同型号, 综述了国内外全箭模态分析及试验验证的进展情况; 然后, 从蒙皮加筋圆柱壳结构动力学建模、液体推进剂动力学模拟、局部振型斜率预示三个方面, 综述了火箭动力学建模技术进展; 最后根据火箭动力学发展需求, 对后续研究提出了一些建议.

  • 1 Alley V L JR, Leadbetter S A. Prediction and measurement of natural vibrations of multistage launch vehicles, AIAA Journal 1(2): 374-379
    2 王毅, 朱礼文. 大型运载火箭动力学关键技术及其进展综述. 导弹与航天运载技术, 2000, (1): 29-37
    3 邱吉宝. 航天器计算结构动力学研究情况展望. 导弹与航天 运载技术, 1993, (4): 37-44
    4 邱吉宝, 王建民. 运载火箭模态试验仿真技术研究新进展. 宇航学报, 2007, 28(3): 515-521
    5 Leadbetter S A. Application of analysis and models to structural dynamic problems related to the apollo-saturn v launch vehicle. NASA TN D-5831, June 1970
    6 王龙生, 张德文. 火箭结构有限元分析的若干问题. 强度与 环境, 1988, (3): 45-53
    7 Peele E L, Thompson W M, Jr, Pusey C G. A theoretical and experimental investigation of the three-dimensional vibration characteristics of a scaled model of an asymmetrical launch vehicle. NASA TN D-4707, August 1968
    8 Catherines J J. Experimental vibration characteristics of a 1/40-scale dynamic model of the saturn V-launchumbilical- tower configuration. NASA TN D-4870, November1968
    9 Adelman H M, Steeves E C. Vibration analysis of a1/40-scale dynamic model of saturn V-launch-platform- umbilical-tower configuration. NASA TN D-4871, November1968
    10 Steeves E C, Catherines J J. Lateral vibration characteristics of a 1/40-scale dynamic model of the apollo-saturn V launch vehicle. NASA TN D-4872, 1968
    11 Leadbetter S A, Raney J P. Model studies of the dynamics of launch vehicles. Journal of Spacecraft and Rockets,1966, (3): 936-938
    12 Leadbetter S A, Leonard H W, Brock E J Jr. Design and fabrication considerations for a 1/10-scale replica model of the apollo/Saturu V. NASA TN D-4138, October 1967
    13 Leadbetter S A, Leonard H W, Peele E L. Lateral Vibration Characteristics of the 1/10-scale Apollo/Saturn V Replica Model. NASA TN D-5778, April, 1970
    14 Leadbetter S A. Application of analysis and models to structural dynamic problems related to the apollo-saturn V launch vehicle. NASA TN D-5831, June, 1970
    15 Pinson L D, Leonard H W. Longitudinal vibration characteristics of 1/10-scale apollo/saturn V replica model. NASA TN D-5159, April, 1969
    16 Peele E L, Leonard H W, Leadbetter S A. Lateral vibration characteristics of the 1/10-scale apollo/saturn V replica model. NASA TN D-5778, April, 1970
    17 Grimes P J, McTigue L D, Riley G F, et al. Advancements in structural dynamic technology resulting from saturn V programs. Vol.I, NASA CR-1539, June, 1970
    18 Grimes P J, McTigue L D, Riley G F, et al. Advancements in structural dynamic technology resulting from saturn V programs. Vol.II, NASA CR-1540, June, 1970
    19 Thornton E A. Vibration analysis of a 1/15-scale dynamic model of a space shuttle configuration. NASA CR-111984,1972
    20 Bernstein M, Mason P W, Zalesak J, et al. NASTRAN analysis of the 1/8-scale space shuttle dynamic model. NASTRAN: Users’ Experiences. NASA TM X-2893, September 1973. 169-241
    21 Mason P W, Harris H G, Zalesak J, et al. Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume I - Summary Report. NASA CR-132488, May 1974; Volume II - Technical Report. NASA CR-132489, May, 1974
    22 Bernstein M, Coppolino R, Zalesak J, et al. Development of technology for fluid-structure interaction modeling of a1/8-scaledynamic model of the shuttle external tank (ET). Volume I: Technical Report. NASA CR-132549, August,1974
    23 Levy A, Zalesak J, Bernstein M, et al. Development of technology for modeling of a 1/8-scale dynamic model of the shuttle solid rocket booster (SRB). NASA CR-132492, July, 1974
    24 Zalesak J. Modal coupling procedures adapted to nastran analysis of the 1/8-scale shuttle structural dynamics model. NASA CR-132666, July, 1975
    25 Pinson L D. Coordinator: analytical and experimental vibration studies of a 1/8-scale shuttle orbiter. NASA TN D-7964, December, 1975
    26 Leadbetter S A, Stephens W B, Sewall J L, et al. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters. NASA TN D-8158, May, 1976
    27 Blanchard U J, Miserentino R, Leadbetter S A. Experimental investigation of the vibration characteristics of a model of an asymmetric multielement space shuttle. NASA TN D-8448, September, 1977
    28 Pinson L D, Leadbetter S A. Some results from 1/8-Scale shuttle model vibration studies. Journal of Spacecraft and Rockets, 1979, 16: 48-55
    29 Emero D H. The quarter-scale space shuttle design, fabrication, and test. AIAA, 1979-0727, 1979
    30 Emero D H. Quarter-scale space shuttle design, fabrication and test. Journal of Spacecraft and Rockets, 1980, 8:303-310
    31 Ralph D B, Justin D, Mercedes C R. TAres I-X flight test vehicle: stack 5 modal test, NASA/TM-2010-216183
    32 Ralph D B, Ralph D B, Justin D. Ares I-X launch vehicle modal test overview. In: Proceedings of IMAC XXVIII, February 2010
    33 Knight N F Jr, Phillips D R. Ares I-X upper stage simulator structural analyses supporting the nesc critical initialflaw size assessment. NASA/TM-2008-215336, NESCRP-08-09/06-081-E
    34 Yoshiki M. 于海昌. 译. 1/5 缩尺H-II 运载火箭的振动试 验. 导弹与航天运载技术, 1988, 2: 64-73
    35 Yoshiki M. Vibration test of 1/5 H-II launch vehicle. AIAA-1987-0783, 1987
    36 Claramonte M 著, 王晋桦. 译. 阿里安运载火箭的动态试 验. 导弹与航天运载技术, 1981.8: 60-65
    37 Bertram 著, 李庆忠. 译. 用扩充的模态鉴定试验验证阿里安
    4 有效载荷整流罩数学模型. 导弹与航天运载技术, 1990.12:49-58
    38 Barthe D, Romeuf T. 阿里安5 运载火箭的动力学模型. 《阿里安5 结构与环境文集》, 1996.12
    39 于海昌, 朱礼文, 王明宇, 等. 大型捆绑火箭模态试验/分析 的相关性研究. 导弹与航天运载技术, 1993, 2: 42-52
    40 吴素春, 贾文成, 邱吉宝. 载人运载火箭全箭模态试验. 宇航 学报, 2005, 26(5): 531-534
    41 谭志勇, 王毅, 王明宇. 针对未来大运载火箭的缩比模型动特 性仿真研究. 强度与环境, 2002, 29(4):11-18
    42 邓魁英, 王毅. 火箭动特性的缩比模型及建模分析. 导弹与航 天运载技术, 2003, 3: 6-12
    43 王心清. 导弹与航天丛书 结构设计. 北京: 宇航出版社,1994
    44 Zhang L, Xiang Y. Vibration of open circular cylindrical shells with intermediate ring supports. Int. J. Solids Struct, 2006, 43: 3705-3722
    45 Li X B. A new approach for free vibration analysis of thin circular cylindrical shell. J. Sound Vib, 2006, 296: 91-98
    46 Pan Z, Li X B, Ma J J. A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions. J. Sound Vib, 2008, 314: 330-342
    47 Wang C, Lai J C S. Prediction of natural frequencies of finite length circular cylindrical shells. Appl. Acoust, 2000,59: 385-400
    48 ¨Omer C. Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach. J. Comput. Appl. Math,2007, 205: 251-271
    49 Lee Y S. A study on the free vibration of the joined cylindrical-spherical shell structures. Compos. Struct,2002: 2405-2414
    50 Lee Y S, Choi M H. Free vibrations of circular cylindrical shells with an interior plate using the receptance method. J. Sound Vib, 2001, 248(3): 477-497
    51 Naeem M N , Sharma C B. Prediction of natural frequencies for thin circular cylindrical shells. Proc Instn. Mech. Engrs, 2000, 214: 1313-1328
    52 Pellicano F. Vibrations of circular cylindrical shells: Theory and experiments. J. Sound Vib, 2007, 303: 154-170
    53 Qatu M S, Sullivan R W, Wang W. Recent research advances on the dynamic analysis of composite shells: 2000-2009. Compos. Struct, 2010, 93(1): 14-31
    54 Wong S K, Sze K Y. Application of the matched asymptotic expansion to the free vibration of a hermetic shells. J. Sound Vib, 209(4): 593-607
    55 邢誉峰, 潘忠文, 杨阳. 蒙皮加筋圆柱壳弯曲频率的三种计 算模型. 北京航空航天大学学报, 2012, 38(4): 438-443
    56 潘忠文, 邢誉峰, 杨阳. 蒙皮加筋圆柱壳扭转频率的三种计 算模型. 北京航空航天大学学报, 2011, 37(9): 1156-1159
    57 Abramson H N. The dynamic behavior of liquids in moving containers. NASA SP-106, 1966
    58 赵人濂. 液体火箭推进剂晃动特性的结构控制. 宇航学报,1984, 1: 58-68
    59 夏益林, 许婉丽. 椭球形贮箱内液体晃动特性试验研究. 宇 航学报, 1991, 22(4): 70-76
    60 尹立中, 航天工程中液体大幅晃动及贮箱类液固耦合动力学 研究: [博士论文]. 哈尔滨: 哈尔滨工业大学, 1999.10-25
    61 杨蔓, 李俊峰, 王天舒, 等. 带环形隔板的圆柱储箱内液体晃 动阻尼分析. 力学学报, 2006, 38(5): 660-667
    62 周宏, 李俊峰, 王天舒. 用于ALE 有限元模拟网格更新方法. 力学学报. 2008, 40(3): 266-272
    63 Eric R C, Joseph B. Launch vehicle slosh and hydroelastic loads analysis using the boundary element method. AIAA, 1997-1036, 1997
    64 Rubin S. Longitudinal instability of liquid rockets due to propulsion feedback (POGO). Journal of Spacecraft and Rockets,1966, 3(8): 1188-1195
    65 Thompson W M, Jr. An investigation of the response of a scaled model of a liquid-propellant multistage launch vehicle to longitudinal excitation. NASA TN D-3975, 1967
    66 Bohdan W O, Rubint S. Advanced pogo stability analysis for liquid rockets. Journal of Spacecraft and Rockets,1993, 30(3): 360-373
    67 Anon. Prevention of coupled structure-propulsion instability (POGO). NASA Space Vehicle Design Criteria (Structures), NASA SP-8055, 1970
    68 王其政, 张建华, 马道远. 捆绑液体火箭跷振(POGO) 稳定 性分析. 强度与环境, 2006, 33(2): 6-11
    69 任辉, 任革学, 荣克林. 液体火箭POGO 振动蓄压器非线性 仿真研究. 强度与环境, 2006, 33(3): 1-6
    70 司徒斌, 高普云. 低温运载火箭POGO 抑制系统研究. 低温 工程, 2006(2): 58-64
    71 Archer J S, Rubin C P. Improved analytic longitudinal response analysis for axisymmetric launch vehicles, volume I-linear analytic model. NASA CR-345, December 1965
    72 Rubin C P, Wang T T. Improved analytic longitudinal response analysis for axisymmetric launch vehicles, vol. II -computer program description. NASA CR-346, 1965
    73 Larry D P. Longitudinal spring constants for liquidpropellant tanks with ellipsoidal ends. NASA TN D-2220, November 1964
    74 Pinson L D, Leonard H W, Raney J P. Analyses of the longitudinal dynamics of launch vehicles with application to a l/l0-scale saturn V model. Spacecraft Rockets, 1968,5(3): 303-308
    75 龙乐豪. 导弹与航天丛书—— 总体设计(上册). 北京: 宇航 出版社, 1989: 469-475
    76 王建民, 荣克林, 冯颖川, 等. 捆绑火箭全箭动力学特性研究. 宇航学报, 2009, 30(3): 821-826
    77 李道奎, 刘林, 万军. 牵制释放过程中火箭液体推进剂的建 模研究. 强度与环境, 2008, 35(6): 14-18
    78 Pan Z Q, Xing Y F, Zhu L W. Liquid propellant analogy technique in dynamic modeling of launch vehicle. Science China Technological Sciences, 2010, 53(8): 2102-2110
    79 潘忠文, 王旭, 邢誉峰. 基于梁模型的火箭纵横扭一体化建 模技术. 宇航学报, 2010, 40(8): 920-928
    80 潘忠文. 运载火箭动力学建模及振型斜率预示技术. 中国科 学, E 辑: 技术科学, 2009, (3): 469-473
  • 加载中
计量
  • 文章访问数:1913
  • HTML全文浏览量:139
  • PDF下载量:2327
  • 被引次数:0
出版历程
  • 收稿日期:2012-03-20
  • 修回日期:2015-05-31
  • 刊出日期:2012-07-25

目录

    /

      返回文章
      返回

        Baidu
        map