-
摘要:纯引力轨道是物体在太空仅受引力作用的运行轨道, 通过构造纯引 力轨道, 可实现超高精度的空间引力探测, 也可为科学实验提供超稳定卫星 平台. 作为纯引力轨道构造的核心, 检验质量的相对测量不仅提供了部分任 务科学数据, 还为航天器平台的跟踪控制提供输入. 首先, 描述了纯引力轨道 的概念内涵, 总结了它在卫星重力测量、引力波探测等方面的应用情况. 其 次, 综述了不同任务对相对测量的需求, 给出了电容式测量、磁感应测量和 光学测量的原理, 总结了各自的优缺点. 根据检验质量的姿态运动, 将检验质 量质心相对状态解算问题分为3 类, 给出了基于检验质量姿态动力学与表面 建模的典型解算模型和质心速度估计方法. 最后分析了非引力干扰的理论计 算、地面实验验证和在轨实验验证问题.Abstract:Purely gravitational orbits are the trajectories of objects in space with grav-itational force only. Once constructed, they allow us to detect spaceborne gravity with extremely high precision, and provide highly stable spacecraft platforms for scientific ex-periments. As the core of purely gravitational orbit construction, the relative measurement for the proof mass is used for scientific data acquisition, and spacecraft tracking control input. In this paper, we first present the concept of purely gravitational orbits, and sum-marize the applications on satellite gravity measurement and gravitational wave detection. Then we survey the relative measurement requirements for various missions, and give the principles, pros and cons for three major measurement methods, namely, capacitive sensing, magnetic sensing and optical sensing. According to the attitude motion of the proof mass, the relative state resolving for its mass center can be classified into three categories. We investigate the typical resolving models based on attitude dynamics and surface modeling of the proof mass, and the velocity estimation methods for mass center. Finally we discuss the-oretical computations, on-ground validations and on-orbit validations for non-gravitational disturbances.
-
[1] 白彦峥, 田蔚, 周泽兵, 吴书朝, 徐海波. 2010. 高精度空间加速度计及其应用. 空间科学学报, 30:601-606 (Bai Y Z, Tian W, Zhou Z B, Wu S C, Xu H B. 2010. High-precision space-borne accelerometer and its applications. Chin J Space Sci, 30: 601-606). [2] 丁衡高, 贺晓霞, 高钟毓. 2013. 应用惯性技术验证广义相对论. 北京: 清华大学出版社(Ding H G,He X X, Gao Z Y. 2013. The Application of Inertial Technology for Testing General Relativity. Beijing:Tsinghua University Press). [3] 高芬. 2011. 基于光学传感的空间等效原理检验可行性分析. 武汉: 华中科技大学(Gao F. 2011. Feasi-bility for testing of the equivalence principle with optical readout in space. Wuhan: Huazhong University of Science and Technology). [4] 龚雪飞, 徐生年, 袁业飞, 白姗, 边星, 曹周键, 陈葛锐, 董鹏, 高天舒, 高伟, 黄双林, 李玉龙, 刘影, 罗子 人, 邵明学, 孙宝三, 唐文林, 于品, 徐鹏, 臧云龙, 张海鹏, 刘润球. 2015. 空间激光干涉引力波探测 与早期宇宙结构形成. 天文学进展, 33: 59-82 (Gong X F, Xu S N, Yuan Y F, Bai S, Bian X, Cao Z J, Chen G R, Dong P, Gao T S, Gao W, Huang S L, Li Y L, Liu Y, Luo Z R, Shao M X, Sun B S, Tang W L, Yu P, Xu P, Zang Y L, Zhang H P, Liu R Q. 2015. Laser interferometric wave detection in space and structure formation in the early universe. Progress in Astronomy, 33: 59-82). [5] 谷振丰, 王兆魁, 张育林. 2013. 基于卫星自旋的纯引力轨道万有引力干扰抑制. 中国科学技术, 20: 239-253 (Gu Z F,Wang Z K, Zhang Y L. 2013. Reduction of gravitational attraction disturbance to purely gravitational orbit based on satellite spinning. Chinese Space Science and Technology, 20: 239-253). [6] 罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵 明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚. 2013. 空间激光干涉引力波探测. 力学进 展, 43: 415-447 (Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G. 2013. Gravitational wave detection by space laser interferometry. Advances in Mechanics, 43: 415-447) [7] 罗子人, 钟敏, 边星, 董鹏, 董玉辉, 高伟, 李洪银, 李玉琼, 刘河山, 冉将军, 邵明学, 唐文林, 徐鹏, 杨 然, 靳刚. 2014. 地球重力场空间探测: 回顾与展望. 力学进展, 44: 291-337 (Luo Z R, Zhong M, Bian X, Dong P, Dong Y H, Gao W, Li H Y, Li Y Q, Liu H S, Ran J J, Shao M X, Tang W L, Xu P, Yang R,Jin G. 2014. Mapping Earth's gravity in space: review and future perspective. Advances in Mechanics, 44: 291-337). [8] 施梨, 曹喜滨, 张锦绣, 张世杰, 董晓光. 2010. 无阻力卫星发展现状. 宇航学报, 31: 1511-1520 (Shi L, Cao X B, Zhang J X, Zhang S J, Dong X G. 2010. Survey of drag-free satellite. Journal of Astronautics, 31: 1511-1520). [9] 薛大同. 2009. 静电悬浮加速度计伺服控制分析. 空间科学学报, 29: 102-106 (Xue D T. 2009. Servo-control analysis of electrostatically suspended accelerometer. Chin J Space Sci, 29: 102-106). [10] Acernese F, Calloni E, Rosa R D, Fiore L D, Garcia L, Milano L. 2004. An optical readout system for the LISA gravitational reference sensors. Classical and Quantum Gravity, 21: 621-627. [11] Allen G S. 2009. Optical sensor design for advanced drag-free satellite. CA, USA: Stanford University. [12] Allen G, Sun K X, Byer R. 2006. Using an optical fiber fed littrow cavity as a displacement sensor for use in dragfree satellites. AIP Conference Proceedings, 873: 334-338. [13] Antonucci F, Armano M, Audley H, Auger G, Benedetti M, Binetruy P. 2012. The LISA pathfinder mission.Classical and Quantum Gravity, 29: 124014. [14] Antonucci F, Armano M, Audley H, Auger G, Benedetti M. 2011. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion. Classical and Quantum Gravity, 28: 094002. [15] Antonucci F, Armano M, Audley H, Auger G, Benedetti M. 2011. LISA Pathfinder data analysis. Classical and Quantum Gravity, 28: 094006. [16] Bai Y Z, Zhou Z B, Tu H B, Wu S C, Cai L, Liu L, Luo J. 2009. Capacitive position measurement for high-precision space inertial sensor. Front. Phys. China, 4: 205-208. [17] Bender P L, Begelman M C, Gair J R. 2013. Possible LISA follow-on mission scientific objectives. Classical and Quantum Gravity, 30: 165017. [18] Bruinsma S, Tamagnan D, Biancale R. 2003. Atmospheric densities derived from CHAMPSTAR accelerom-eter observations. Planetary and Space Science, 52: 297-312. [19] Canuto E, Massotti L. 2009. All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronautica, 64: 325-344. [20] Carbone L, Ciani G, Dolesi R, Hueller M, Tombolato D, Vitale S, Weber W J. 2007. Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries. Physical Review D, 75: 042001. [21] Cavalleri A, Ciani G, Dolesi R, Hueller M, Nicolodi D, Tombolato D, Wass P J, Weber W J, Vitale S,Carbone L. 2009. Direct force measurements for testing the LISA Pathfinder gravitational reference sensor. Classical and Quantum Gravity, 26: 094012. [22] Cavalleri A, Dolesi R, Fontana G, Hueller M, Turneaure J, Vitale S, Weber W. 2001. Progress in the development of a position sensor for LISA drag-free control. Classical and Quantum Gravity, 18: 4133-4144. [23] Christophe B , Marque J P, Foulon B. 2010. In-orbit data verification of the accelerometers of the ESA GOCE mission. Proceedings of Societe Francaise d' Astronomie etd' Astrophysique (SF2A), Marseille,France: 237-240. [24] Congedo G, Ferraioli L, Hueller M, Marchi F D, Vitale S. 2012. Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis. Physical Review D, 85: 122004. [25] Conklin J W, Allen G, Sun K X, DeBra D B. 2008. Determination of spherical test mass kinematics with modular gravitational reference sensor. Journal of Guidance, Control, and Dynamics, 31: 1700-1707. [26] Conklin J W, Balakrishnan K, Buchman S, Byer R L, Cutler G D, DeBra D B, Hultgren E, Lipa J A, Saraf S,Conklin J W, Sun K X, DeBra D B. 2011. Sphere mass center determination by velocity modulation.Precision Engineering, 35: 464-472. [27] Conklin J W. 2008. Estimation of the mass center and dynamics of a spherical test mass for gravitational reference sensors. CA, USA: Stanford University, 1-42. [28] Corbin V, Cornish N. 2006. Detecting the cosmic gravitational wave background with the Big Bang Observer.Classical and Quantum Gravity, 23: 2435-2446. [29] Crowder J O. 2006. Data analysis for space-based gravitational wave detectors. Montana, USA: Montana State University. [30] Dang Z H, Zhang Y L. 2011. The principle of solar radiation for controlling a spherical proof mass in an inner-formation satellite. Acta Astronautica, 69: 860-868. [31] Dang Z H, Zhang Y L. 2012. Formation control using μ-synthesis for inner-formation gravity measurement satellite system. Advances in Space Research, 49: 1487-1505. [32] DeBra D B, Conklin J W. 2011. Measurement of drag and its cancellation. Classical and Quantum Gravity, 28: 094015. [33] Dolphin M D M. 2007. Polhode dynamics and gyroscope asymmetry analysis on Gravity Probe B using gyroscope position data. CA, USA: Stanford University. [34] Eglington M L. 2000. Authority-on-demand adaptive suspension control for the Gravity Probe B gyroscopes.CA, USA: Stanford University. [35] Ferraioli L, Hueller M, Vitale S. 2009. Discrete derivative estimation in LISA Pathfinder data reduction.Classical and Quantum Gravity, 26: 094013. [36] Gao F, Zhou Z B, Luo J. 2011. Feasibility for testing the equivalence principle with optical readout in space.Chin Phys Lett, 28: 080401. [37] Gerardi D, Allen G, Conklin J W, Sun K X, DeBra D, Buchman S, Gath P, Fichter W, Byer R L, Johann U. 2014. Advanced drag-free concepts for future space-based interferometers: acceleration noise performance.Review of Scientific Instruments, 85: 011301. [38] Gong X F, Xu S N, Yuan Y F, Bai S, Cao Z J, Chen G R, Chen Y B, He X K, Heinzel G, Lau Y K, Liu C Z, Luo J, Hu M, Bai Y Z, Zhou Z B, Li Z X, Luo J. 2014. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge. Review of Scientific Instruments, 85: 055001. [39] Kawamura S, Ando M, Seto N, Sato S, Nakamura T, Tsubono K, Kanda N. 2011. The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 28: 094011. [40] Lammerzahl C, Everitt C W F, Hehl F W. 2001. Gyros, Clocks, Interferometers...: Testing Relativitisc Gravity in Space. Berlin: Springer. [41] Lauben D, Allen G, Bencze W, Buchman S, Byer R, Goh A, Dorlybounxou S, Hanson J, Ho L, Higuchi S,Huffman G, Sabur F, Sun K, Tavernetti R, Rolih L, Patten R V,Wallace J, Williams S. 2006. Electrostatic sensing and forcing electronics performance for the LISA Pathfinder gravitational reference sensor. AIP Conference Proceedings, 873: 576-582. [42] Levy A, Touboul P, Rodrigues M, Metris G, Robert A. 2010. The MICROSCOPE space mission and the inflight calibration approach for its instrument. Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, SF2A: 123-126. [43] LISA study team. 1998. LISA pre phase a report. LISA Project International Report, MPQ 233: 1-40. [44] Liu H W, Wang Z K, Zhang Y L. 2013. Modeling and analysis of Earth's gravity field measurement performance by inner-formation flying system. Advances in Space Research, 52: 451-465. [45] Liu H,Wang Z, Zhang Y. 2011. Coupled modeling and analysis of radiometer effect and residual gas damping on proof mass in purely gravitational orbit. Sci China Tech Sci, 54: 894-902. [46] Lockerbie N. 2004. Measurement of shadow-sensor displacement sensitivities. LIGO Document, LIGO-T040136-00-K: 1-5. [47] Luo Z R, Paton A P, Rudiger A, Shao M X, Spurzem R, Wang Y, Xu P, Yeh H C, Yuan Y F, Zhou Z B. 2011. A scientific case study of an advanced LISA mission. Classical and Quantum Gravity, 28: 094012. [48] Nofrarias M, Antonucci F, Armano M, Audley H, Auger G, Benedetti M, Binetruy P. 2013. State space modelling and data analysis exercises in LISA Pathfinder. arXiv preprint, arXiv: 1306.4487. [49] Overduin J, Everitt F, Worden P, Mester J. 2012. STEP and fundamental physics. Classical and Quantum Gravity, 29: 184012. [50] Rana A L. 2007. An optical readout for the gravitatonal reference sensor of LISA. Italy: University of Napoli Federico II: 50-66. [51] Rispens S, Bouman J. 2009. Calibrating the GOCE accelerations with star sensor data and a global gravity field model. J Geod, 83: 737-749. [52] Rubbo L J. 2004. Gravitational wave astronomy using spaceborne detectors. Montana, USA: Montana State University. [53] Schumaker B L. 2003. Disturbance reduction requirements for LISA. Classical and Quantum Gravity, 20: 239-253. [54] Selig H, Lammerzahl C, Ni W T. 2012. Astrodynamical space test of relativity using optical devices I (Astrod I) -mission overview. International Journal of Modern Physics D, 22: 1341003. [55] Seoane P A, Aoudia S, Babak S, Binetruy P, Berti E, Bohe A, Caprini C, Colpi M, Cornish N J, Danzmann K, Dufaux J F, Gair J, Jennrich O. 2012. Low-frequency gravitational-wave science with eLISA/NGO.Classical and Quantum Gravity, 29: 124016. [56] Shimizu S, Zoellner A. 2012. The drag-free cubeSat. 26th Annual AIAA/USU Conference on Small Satellites,Utah, USA: SSC12-VI-8. [57] Siemes C, Haagmans R, Kern M, Plank G, Floberghagen R. 2012. Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data methodology and first results. Journal of Geodesy, 86: 629-645. [58] Speake C C, Aston S M. 2005. An interferometric sensor for satellite drag-free. Classical and Quantum Gravity, 22: 269-277. [59] Sumner T J, Anderson J, Blaser J P, Cruise A M, Damour T, Dittus H, Everitt C W F, Foulon B, Jafry Y,Kent B J, Lockerbie N, Loe2er F, Mann G, Mester J, Pegrum C, Reinhardt R, Sandford M, Scheicher [60] A, Speake C C, Torii R, Theil S, Touboul P, Vitale S, Vodel W, Worden P W. 2007. STEP (satellite test of the equivalence principle). Advances in Space Research, 39: 254-258. [61] Sumner T J. 2009. The STEP and GAUGE Missions. Space Science Reviews, 148: 475-487. [62] Sun K X, Allen G, Buchman S, DeBra D, Byer R. 2005. Advanced gravitational reference sensor for high precision space interferometers. Classical and Quantum Gravity, 22: 287-296. [63] Sun K X, Allen G, Williams S, Buchman S, DeBra D, Byer R. 2006. Modular gravitational reference sensor: simplified architecture to future LISA and BBO. Journal of Physics: Conference Series, 32: 137-146. [64] Sun K X, Buchman S, Byer R, DeBra D, Goebel J, Allen G, Conklin J W, Gerardi D, Higuchi S, Leindecker N, Lu, Swank P A, Torres E, Trittler M. 2009. Modular gravitational reference sensor development.Journal of Physics: Conference Series, 154: 012026. [65] Sun K X, Johann U, DeBra D B, Buchman S, Byer R L. 2007. LISA gravitational reference sensors. Journal of Physics: Conference Series, 60: 272-275. [66] Swank A J. 2009. Gravitational mass attraction measurement for drag-free references. CA, USA: Stanford University: 4-11. [67] Touboul P, Métris G, Lebat V, Robert A. 2012. The MICROSCOPE experiment, ready for the in-orbit test of the equivalence principle. Classical and Quantum Gravity, 29: 184010. [68] Touboul P. 2009. The MICROSCOPE mission and its uncertainty analysis. Space Science Reviews, 148: 455-474. [69] Trittler M. 2008. Differential optical shadow sensing testbed for gravitational reference sensors. UniversitÄat Stuttgart, Germany: 9-23. [70] Tu H B, Bai Y Z, Zhou Z B, Liu L, Cai L, Luo J. 2010. Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum. Classical and Quantum Gravity, 27: 205016. [71] Wang Z K, Zhang Y L. 2013. Acquirement of pure gravity orbit using precise formation flying technology.Acta Astronautica, 82: 124-128. [72] Zoellner A, Buchman S, Conklin J W, DeBra D B, Saraf S, Shimizu S. 2012. Differential optical shadow sensor cubesat missions. 26th Annual AIAA/USU Conference on Small Satellites, Utah, USA: SSC12-IX-6. [73] Zoellner A, Hultgren E, Sun K X. 2013. Integrated differential optical shadow sensor for modular gravita-tional reference sensor. 8th International LISA Symposium, Stanford University, USA: 1-6.
点击查看大图
计量
- 文章访问数:1477
- HTML全文浏览量:119
- PDF下载量:944
- 被引次数:0