-
摘要:移动接触线,指两种互不相溶的流体在固体表面形成移动的三相接触区域.移动接触区域跨越多个尺度,其中三相物质之间的相互作用影响着整个流场的动力学特征.由于在能源、航天、生物等领域中的重要应用和迅速发展,移动接触线在新的应用背景下发展了新的难题.标度分析是度量接触线自相似扩展的重要手段.本文以移动接触线的标度关系为主线,介绍了"力-电-热-化学"多场耦合环境下,亲水内角、微柱阵列、可溶解固体、水力压裂滞后区等复杂几何结构的刚性/柔性固体表面,采用物理力学方法对于移动接触线动力学属性研究的进展.通过跨尺度实验研究、大规模分子动力学模拟和分子动理论/水动力学理论相结合的方法,发现了类固体前驱膜、单分子前驱水链、锯齿形接触线等新现象.从原子尺度的界面结构到连续尺度的流动特性,讨论了移动接触线自相似扩展的标度关系,以及其驱动来源、能量耗散、边界条件等物理机制和规律,为多物理场中的"Huh-Scriven佯谬"探索了解答,为移动接触线的前景和应用提出了展望.Abstract:Moving contact line (MCL) is the triple-phase region (TPR) formed by two impermeable fluids moving on a solid surface. TPR covers multiple scales, where the interactions among phases influence the dynamic behaviors of the entire fluid field. Owing to its significant applications and rapid development in the fields of energy, aerospace, biology, etc., new challenges emerge in MCL problems. Scaling analysis is an important tool to characterize self-similar expansion of the MCL. Focusing on the scaling relations of MCLs, we review the progresses of physical mechanics investigations under "mechano-electro-thermalchemical" multifield coupled conditions for MCL on rigid/flexible solid surfaces with complex geometries, including hydraulic interior corner, micro-pillar-arrayed surface, dissolvable surface, lag zone in hydraulic fracturing, etc. Through a combined study of multiscale experiments, large-scale molecular dynamics simulations, molecular kinetic theory and hydrodynamics, new phenomena were discovered, such as solid-like precursor film, single-file water-molecular precursor chain, and zigzag MCL. From the interface structure at atomic level to the flow characteristics at continuum level, we discuss the scaling laws of self-similar expansion, and the physical mechanisms and dynamic rules, such as driving source, energy dissipation, boundary conditions, etc. We explore the answers to the "Huh-Scriven paradox" under multifield circumstance, and outlook the prospects and applications of MCL.
-
[1] 钱学森. 1962. 物理力学讲义. 北京, 科学出版社(Tsien H S. 1962. Lecture Notes on Physical Mechanics. Beijing:Science Press). [2] 赵亚溥. 2012. 表面与界面物理力学. 北京, 科学出版社(Zhao Y P. 2012. Physical Mechanics of Surfaces and Interfaces. Beijing:Science Press). [3] 赵亚溥. 2014. 纳米与介观力学. 北京, 科学出版社(Zhao Y P. 2014. Nano and Mesoscopic Mechanics. Beijing:Science Press). [4] Abraham D B, Collet P, De Coninck J, Dunlop F. 1990. Langevin dynamics of spreading and wetting. Physical Review Letters, 65:195. [5] Advani S H, Lee T S, Dean R H, Pak C K, Avasthi J M. 1997. Consequences of fluid lag in three-dimensional hydraulic fractures. International Journal for Numerical and Analytical Methods in Geomechanics, 21:229-240. [6] Algara-Siller G, Lehtinen O, Wang F, Nair R, Kaiser U, Wu H, Geim A, Grigorieva I. 2015. Square ice in graphene nanocapillaries. Nature, 519:443-445. [7] Anna S L. 2016. Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 48:285-309. [8] Ausserré D, Picard A M, Léger L. 1986. Existence and role of the precursor film in the spreading of polymer liquids. Physical Review Letters, 57:2671. [9] Bain C D, Burnett-Hall G D, Montgomerie R R. 1994. Rapid motion of liquid drops. Nature, 372:414-415. [10] Barenblatt G, Beretta E, Bertsch M. 1997. The problem of the spreading of a liquid film along a solid surface:A new mathematical formulation. Proceedings of the National Academy of Sciences, 94:10024-10030. [11] Batchelor G K. 2000. An Introduction to Fluid Dynamics. New York:Cambridge University Press. [12] Berthier J. 2012. Micro-drops and Digital Microfluidics. England:William Andrew. [13] Bico J, Quéré D. 2002. Self-propelling slugs. Journal of Fluid Mechanics, 467:101-127. [14] Blake T D. 1993. Wettability. New York:Dekker. [15] Blake T D. 2006. The physics of moving wetting lines. Journal of Colloid and Interface Science, 299:1-13. [16] Blake T D, De Coninck J. 2002. The influence of solid-liquid interactions on dynamic wetting. Advances in Colloid and Interface Science, 96:21-36. [17] Blake T D, Haynes J M. 1969. Kinetics of liquid/liquid displacement. Journal of Colloid and Interface Science, 30:421-423. [18] Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009. Wetting and spreading. Reviews of Modern Physics, 81:739-805. [19] Bostwick J, Steen P. 2015. Stability of constrained capillary surfaces. Annual Review of Fluid Mechanics, 47:539-568. [20] Brochard-Wyart F, De Gennes P. 1992. Dynamics of partial wetting. Advances in Colloid and Interface Science, 39:1-11. [21] Bunger A P, Detournay E. 2008. Experimental validation of the tip asymptotics for a fluid-driven crack. Journal of the Mechanics and Physics of Solids, 56:3101-3115. [22] Bunger A P, Gordeliy E, Detournay E. 2013. Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids. Journal of the Mechanics and Physics of Solids, 61:1636-1654. [23] Busse A, Sandham N D, McHale G, Newton M I. 2013. Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. Journal of Fluid Mechanics, 727:488-508. [24] Cermeño P, Falkowski P G, Romero O E, Schaller M F, Vallina S M. 2015. Continental erosion and the cenozoic rise of marine diatoms. Proceedings of the National Academy of Sciences of the United States of America, 112:4239-4244. [25] Chen J D, Wada N. 1989. Wetting dynamics of the edge of a spreading drop. Physical Review Letters, 62:3050. [26] Cho S K, Moon H, Kim C-J. 2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12:70-80. [27] Cira N, Benusiglio A, Prakash M. 2015. Vapour-mediated sensing and motility in two-component droplets. Nature, 519:446-450. [28] Concus P, Finn R. 1969. On the behavior of a capillary surface in a wedge. Proceedings of the National Academy of Sciences of the United States of America, 63:292-299. [29] Courbin L, Denieul E, Dressaire E, Roper M, Ajdari A, Stone H A. 2007. Imbibition by polygonal spreading on microdecorated surfaces. Nature Materials, 6:661-664. [30] Cox R. 1986. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. Journal of Fluid Mechanics, 168:169-194. [31] Daccord G, Lenormand R. 1987. Fractal patterns from chemical dissolution. Nature, 325:41-43. [32] Daneshy A A. 1978. Hydraulic fracture propagation in layered formations. Society of Petroleum Engineers Journal, 18:33-41. [33] Daub C D, Bratko D, Leung K, Luzar A. 2007. Electrowetting at the nanoscale. Journal of Physical Chemistry C, 111:505-509. [34] De Gennes P-G. 1985. Wetting:Statics and dynamics. Reviews of Modern Physics, 57:827-863. [35] De Gennes P-G, Brochard-Wyart F, Quéré D. 2004. Capillarity and Wetting Phenomena:Drops, Bubbles, Pearls, Waves. Germany:Springer. [36] De Gennes P G. 1985. Wetting:Statics and dynamics. Reviews of Modern Physics, 57:827-863. [37] De Ruijter M J, Blake T D, De Coninck J. 1999. Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir, 15:7836-7847. [38] Denkov N, Tcholakova S, Lesov I, Cholakova D, Smoukov S K. 2015. Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling. Nature, 528:392-395. [39] Derjaguin B V, Churaev N V. 1974. Structural component of disjoining pressure. Journal of Colloid and Interface Science, 49:249-255. [40] Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson J, Thiercelin M, Cheng A. 1994. The crack tip region in hydraulic fracturing. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 447:39-48. [41] Detournay E. 2016. Mechanics of hydraulic fractures. Annual Review of Fluid Mechanics, 48:311-339. [42] Ding H, Gilani M N, Spelt P D. 2010. Sliding, pinch-off and detachment of a droplet on a wall in shear flow. Journal of Fluid Mechanics, 644:217-244. [43] Dokoumetzidis A, Macheras P. 2006. A century of dissolution research:From noyes and whitney to the biopharmaceutics classification system. International Journal of Pharmaceutics, 321:1-11. [44] Dos Santos F D, Ondarcuhu T. 1995. Free-running droplets. Physical Review Letters, 75:2972. [45] Dussan V E B. 1976. The moving contact line:The slip boundary condition. Journal of Fluid Mechanics, 77:665-684. [46] Fan S K, Huang P W, Wang T T, Peng Y H. 2008. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab on a Chip, 8:1325-1331. [47] Feng J T, Zhao Y P. 2008. Influence of different amount of au on the wetting behavior of pdms membrane. Biomedical Microdevices, 10:65-72. [48] Foreman B Z, Lai S Y, Komatsu Y, Paola C. 2015. Braiding of submarine channels controlled by aspect ratio similar to rivers. Nature Geoscience, 8:700-703. [49] Fox H, Zisman W. 1950. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. Journal of Colloid Science, 5:514-531. [50] Frenkel J. 1946. Kinetic Theory of Liquids. Oxford:Oxford University Press. [51] Garagash D, Detournay E. 2000. The tip region of a fluid-driven fracture in an elastic medium. Journal of Applied Mechanics, 67:183-192. [52] Geertsma J, De Klerk F. 1969. A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21:1571-1581. [53] Gladstone S, Laidler K, Eyring H. 1941. The Theory of Rate Processes. New York:McGraw-Hill. [54] Greenspan H. 1978. On the motion of a small viscous droplet that wets a surface. Journal of Fluid Mechanics, 84:125-143. [55] Grouchko M, Roitman P, Zhu X, Popov I, Kamyshny A, Su H, Magdassi S. 2014. Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nature Communications, 5:2994. [56] Hardy W B. 1919. The spreading of fluids on glass. Philosophical Magazine, 38:49-55. [57] Heiranian M, Farimani A B, Aluru N R 2015. Water desalination with a single-layer mos2 nanopore. Nature Communications, 6:8616. [58] Herbertson D L, Evans C R, Shirtcliffe N J, McHale G, Newton M I. 2006. Electrowetting on superhydrophobic su-8 patterned surfaces. Sensors and Actuators A:Physical, 130:189-193. [59] Hocking L. 1976. A moving fluid interface on a rough surface. Journal of Fluid Mechanics, 76:801-817. [60] Hu W, Zhao J, Long M, Zhang X, Liu Q, Hou M, Kang Q, Wang Y, Xu S, Kong W. 2014. Space program sj-10 of microgravity research. Microgravity Science and Technology, 26:159-169. [61] Huang J M, Moore M N J, Ristroph L. 2015. Shape dynamics and scaling laws for a body dissolving in fluid flow. Journal of Fluid Mechanics, 765:R3. [62] Huang K, Szlufarska I. 2015. Effect of interfaces on the nearby brownian motion. Nature Communications, 6:8558. [63] Huh C, Scriven L. 1971. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 35:85-101. [64] Jones T B. 2002. On the relationship of dielectrophoresis and electrowetting. Langmuir, 18:4437-4443. [65] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. 2014. [66] Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 343:752-754. [67] Josserand C, Thoroddsen S T. 2016. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 48:365-391. [68] Kavehpour H P, Ovryn B, McKinley G H. 2003. Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Physical Review Letters, 91:196104. [69] Khristianovic S A, Zheltov Y P. 1955. Formation of vertical fractures by means of highly viscous fluids//Proceedings of 4th World Petroleum Congress:579-586. [70] Klajn R. 2014. Spiropyran-based dynamic materials. Chemical Society Reviews, 43:148-184. [71] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C. 2009. Coexistence and transition between cassie and wenzel state on pillared hydrophobic surface. Proceedings of the National Academy of Sciences of the United States of America, 106:8435. [72] Krupenkin T, Taylor J A. 2011. Reverse electrowetting as a new approach to high-power energy harvesting. Nature Communications, 2:448. [73] Leger L, Erman M, Guinet-Picard A M, Ausserre D, Strazielle C. 1988. Precursor film profiles of spreading liquid drops. Physical Review Letters, 60:2390-2393. [74] Lippmann G. 1875. Relations entre les phénomènes électriques et capillaires. Annales De Chimie et de Physique, 5:494-549. [75] Lü C, Clanet C, Quéré D. 2015. Retraction of large liquid strips. Journal of Fluid Mechanics, 778:R6. [76] Ma M, Grey F, Shen L, Urbakh M, Wu S, Liu J Z, Liu Y, Zheng Q 2015. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nature Nanotechnology, 10:692-695. [77] Manukyan G, Oh J, Van Den Ende D, Lammertink R, Mugele F. 2011. Electrical switching of wetting states on superhydrophobic surfaces:A route towards reversible cassie-to-wenzel transitions. Physical Review Letters, 106:014501. [78] Martinez A W, Phillips S T, Whitesides G M. 2008. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences of the United States of America, 105:19606-19611. [79] McHale G. 2007. Surface wetting:Liquids shape up nicely. Nature Materials, 6:627-628. [80] McHale G, Shirtcliffe N, Aqil S, Perry C, Newton M. 2004. Topography driven spreading. Physical Review Letters, 93:36102. [81] Medlin W L, Masse L. 1984. Laboratory experiments in fracture propagation. Society of Petroleum Engineers Journal, 24:256-268. [82] Mugele F, Baret J C. 2005. Electrowetting:From basics to applications. Journal of Physics-Condensed Matter, 17:R705-R774. [83] Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A. 2007. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450:1235-1239. [84] Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt H-J. 2013. How superhydrophobicity breaks down. Proceedings of the National academy of Sciences of the United States of America, 110:3254-3258. [85] Papanastasiou P, Thiercelin M. 1983. Influence of preexisting discontinuities on the hydraulic fracturing propagation process. Hydraulic racturing and geothermal energy. Germany:Springer, 413-430. [86] Parker A R, Lawrence C R. 2001. Water capture by a desert beetle. Nature, 414:33-34. [87] Parker G, Izumi N. 2000. Purely erosional cyclic and solitary steps created by flow over a cohesive bed. Journal of Fluid Mechanics, 419:203-238. [88] Petrov P, Petrov I. 1992. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir, 8:1762-1767. [89] Philip J. 1977. Adsorption and geometry:The boundary layer approximation. Journal of Chemical Physics, 67:1732-1741. [90] Pollack M G, Fair R B, Shenderov A D. 2000. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 77:1725-1726. [91] Psaltis D, Quake S R, Yang C. 2006. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442:381-386. [92] Quéré D. 2008. Wetting and roughness. Annual Review of Materials Research, 38:71-99. [93] Quilliet C, Berge B. 2001. Electrowetting:A recent outbreak. Current Opinion in Colloid and Interface Science, 6:34-39. [94] Ren W, Hu D, Weinan E. 2010. Continuum models for the contact line problem. Physics of Fluids, 22:102103. [95] Ricci M, Spijker P, Vötchovsky K. 2014. Water-induced correlation between single ions imaged at the solid-liquid interface. Nature Communications, 5:4400. [96] Rice J R. 1968. Mathematical analysis in the mechanics of fracture//Liebowitz H. ed. Fracture:An Advanced Treatise. New York:Academic Press. 191-311. [97] Ristroph L, Moore M N, Childress S, Shelley M J, Zhang J. 2012. Sculpting of an erodible body by flowing water. Proceedings of the National Academy of Sciences of the United States of America, 109:19606-19609. [98] Savitski A A, Detournay E. 2002. Propagation of a penny-shaped fluid-driven fracture in an impermeable rock:Asymptotic solutions. International Journal of Solids and Structures, 39:6311-6337. [99] Siepmann J, Peppas N. 2012. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (hpmc). Advanced Drug Delivery Reviews, 64:163-174. [100] Sinaiski E G, Lapiga E J. 2015. Coalescence of drops. Annual Review of Fluid Mechanics, 47:245-268. [101] Su S, Yin L, Sun Y, Murray B T, Singler T J 2009. Modeling dissolution and spreading of bi-sn alloy drops on a bi substrate. Acta Materialia, 57:3110-3122. [102] Sui Y, Ding H, Spelt P D. 2014. Numerical simulations of flows with moving contact lines. Annual Review of Fluid Mechanics, 46:97-119. [103] Tanner L. 1979. The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D-Applied Physics, 12:1473-1484. [104] Taylor B. 1712. Concerning the ascent of water between two glass planes. Philosophical Transactions of the Royal Society of London, 27:538. [105] Tersoff J, Jesson D E, Tang W-X. 2009. Running droplets of gallium from evaporation of gallium arsenide. Science, 324:236-238. [106] Thompson P A, Troian S M. 1997. A general boundary condition for liquid flow at solid surfaces. Nature, 389:360-362. [107] Vallade M V M, Berge B. 1999. Limiting phenomena for the spreading of water on polymer films by electrowetting. European Physical Journal B, 11:583-591. [108] Villanueva W, Boettinger W J, McFadden G B, Warren J A. 2012. A diffuse-interface model of reactive wetting with intermetallic formation. Acta Materialia, 60:3799-3814. [109] Voinov O. 1976. Hydrodynamics of wetting. Fluid Dynamics, 11:714-721. [110] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J, Fang H P. 2009. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Physical Review Letters, 103:137801. [111] Wang C, Zhou B, Xiu P, Fang H P. 2011. Effect of surface morphology on the ordered water layer at room temperature. Journal of Physical Chemistry C, 115:3018-3024. [112] Wang C X, Xu S H, Sun Z W, Hu W R. 2010. A study of the influence of initial liquid volume on the capillary flow in an interior corner under microgravity. International Journal of Heat and Mass Transfer, 53:1801-1807. [113] Wang F, Wu H. 2015. Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 5:17521. [114] Wang Y, Zhao Y P. 2012. Electrowetting on curved surfaces. Soft Matter, 8:2599-2606. [115] Warren J A, Boettinger W, Roosen A 1998. Modeling reactive wetting. Acta Materialia, 46:3247-3264. [116] Webb E B, Grest G S, Heine D R. 2003. Precursor film controlled wetting of pb on cu. Physical Review Letters, 91:236102. [117] Weislogel M, Lichter S. 1998. Capillary flow in an interior corner. Journal of Fluid Mechanics, 373:349-378. [118] Welters W J, Fokkink L G.1998. Fast electrically switchable capillary effects. Langmuir, 14:1535-1538. [119] Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477:443-447. [120] Yang F Q, Zhao Y P. 2016. The effect of a capillary bridge on the crack opening of a penny crack. Soft Matter, 12:1586-1592. [121] Yang J-X, Koplik J, Banavar J R. 1991. Molecular dynamics of drop spreading on a solid surface. Physical Review Letters, 67:3539. [122] Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. 2014. Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology, 9:378-383. [123] Yin J, Zhang Z, Li X, Yu J, Zhou J, Chen Y, Guo W. 2014. Waving potential in graphene. Nature Communications, 5:3582. [124] Young T. 1805. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95:65-87. [125] Yuan Q Z, Huang X F, Zhao Y P. 2014. Dynamic spreading on pillar-arrayed surfaces:Viscous resistance versus molecular friction. Physics of Fluids, 26:092104. [126] Yuan Q Z, Zhao Y P. 2009. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. Journal of the American Chemical Society, 131:6374-6376. [127] Yuan Q Z, Zhao Y P. 2010. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Physical Review Letters, 104:246101. [128] Yuan Q Z, Zhao Y P. 2012. Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 468:310-322. [129] Yuan Q Z, Zhao Y P. 2013. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. Journal of Fluid Mechanics, 716:171-188. [130] Yuan Q Z, Zhao Y P. 2013. Wetting on flexible hydrophilic pillar-arrays. Scientific Reports, 3:1944. [131] Yuan Q Z, Zhao Y P. 2015. Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale. Nanoscale, 7:2561-2567. [132] Yue P, Feng J J, Liu C, Shen J. 2004. A diffuse-interface method for simulating two-phase flows of complex fluids. Journal of Fluid Mechanics, 515:293-317. [133] Zhao Y P. 2014. Moving contact line problem:Advances and perspectives. Theoretical and Applied Mechanics Letters, 4:034002. [134] Zhu X Y, Yuan Q Z, Zhao Y P. 2012. Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity. Scientific Reports, 2:927. [135] Zhu X Y, Zhao Y P. 2014. Atomic mechanisms and equation of state of methane adsorption in carbon nanopores. Journal of Physical Chemistry C, 118:17737-17744.
点击查看大图
计量
- 文章访问数:2878
- HTML全文浏览量:177
- PDF下载量:1722
- 被引次数:0