-
摘要:激波的传播特性既取决于激波的产生条件,也与所处的传播环境密切相关.驱动条件、几何边界、介质的物理化学属性等发生变化时,都会引起激波传播特性的改变,而激波的变化反过来又会对其波及的流场产生影响.尽管激波传播及其干扰现象广泛存在于自然界和人类科技活动之中,其复杂机理的认识、规律的描述乃至应用潜力的挖掘仍有漫长的路要走.本文根据气体中激波传播和干扰现象以及与之相关的理论描述特征,在对激波传播以及反射、折射等基本现象进行简要阐述的基础上,重点围绕目前的热点问题,包括激波/激波干扰、激波/边界层干扰、激波与湍流作用、激波的聚焦与点火以及激波作用下气体界面不稳定性等研究进行了介绍和讨论,旨在对近年来该领域的进展及获得的成果做一个概述和归纳,期望对将来的深入研究有一个鉴借意义.
-
关键词:
- 激波传播/
- 激波反射/
- 激波/边界层相互作用/
- 激波/界面相互作用/
- 激波极线
Abstract:The propagation of a shock wave depends not only on the conditions that it is generated, but also on the media where it propagates. Variations in driver condition, boundary condition and/or physical/chemical properties of the media may alter the behav-iors of the shock wave propagation, while the flowfield also varies along with the shock wave motion. Although shock wave propagation and interactions exist widely in the nature and human activities, there is still a long way to go for a better understanding of its complex mechanism, for theoretical descriptions of the phenomena, as well as for enrichment of the application. In this paper, we review the shock wave interactions and related analyses, and further discuss several hot topics, including shock/shock interaction, shock/boundary layer interaction, shock/turbulence interaction, shock focusing/ignition and instability of shocked interface. -
[1] 包醒东, 李志强, 妥欢, 董鹤. 2013. 斜向环形激波聚焦诱导直接起爆的大涡模拟. 航空动力学报, 28: 2455-2461 (Bao X D, Li Z Q. Tuo H, Dong H. 2013. LES of direct detonation induced by incident circular shock wave focusing. Journal of Aerospace Power, 28: 2455-2461). [2] 蔡佳, 苏纬仪, 张堃元, 李永洲. 2013. 高超声速二元进气道脉冲起动双波结构的理论与数值研究. 推进技术, 34: 1165-1171 (Cai J, SuWY, Zhang K Y, Li Y Z. 2013. Theoretical and numerical study of double shock structure during 2D hypersonic inlet pulse-starting process. Journal of Propulsion Technology, 34: 1165-1171). [3] 陈强. 1978. 激波管流动的理论和实验技术. 中国科学技术大学讲义(Chen Q. 1978. Theory and experimental techniques of shock tube flow. Teaching-book printed by the University of Science and [4] 董刚, 叶经方, 范宝春. 2006. 激波聚焦反射的实验和数值研究. 高压物理学报, 20: 359-364 (Dong G, Ye J F, Fang B C. 2006. Experimental and numerical investigation of shock wave focusing and reflection. Chinese Journal of High Pressure Physics, 20: 359-364). [5] 董平, 罗喜胜, 翟志刚. 2015. 平面激波与V 形air/SF6 肥皂膜界面相互作用的研究. 中国科学: 物理学力学天文学, 45: 044701 (Dong P, Luo X S, Zhai Z G. 2015. Research on the interaction of planar shock with ‘inverse chevron’ air/SF6 soap film interface. Scientia Sinica Physica, Mechanica & Astronomica, 45: 044701). [6] 范晓樯, 贾地, 冯定华, 李桦. 2007. 脉冲风洞中进气道起动过程试验研究. 推进技术, 28: 60-64 (Fan X Q, Jia D, Feng D H, Li H. 2007. Experimental investigation on starting process of hypersonic inlet in gun tunnel. Journal of Propulsion Technology, 28: 60-64). [7] 高波. 2010. 二维定常超音速流中激波马赫反射的波系结构与转捩研究. [博士论文]. 北京: 清华大学(Gao B. 2010. Wave structure and transition of Mach reflection in two-dimensional steady supersonicflows. [PhD Thesis]. Beijing: Tsinghua University). [8] 高山和喜. 1995. 衝擊波ハンドブック. 东京: Springer 1-1256 (Takayama K. 1995. Handbook of shock waves. Tokyo: Springer Press). [9] 高雄, 满延进, 李大进, 朱守梅. 2015. 试验研究高超二元进气道超额定状态//第五届冲压发动机技术交流会. 厦门, 下册: 348-353 (Gao X, Man Y J, Li D J, Zhu S M. 2015. An experimental investigation of supernormal condition of a hypersonic 2D inlet//Proceedings of 5th Chinese National Symposium on Ramjet Engine Technology. Xiamen, China, 3: 348-353). [10] 何立明, 荣康, 曾昊, 陈鑫, 张强, 于鹏祥. 2015. 激波聚焦及起爆爆震波的研究进展. 推进技术, 36: 1441-1458 (He L M, Rong K, Zeng H, Chen X, Zhang Q, Yu P X. 2015. Advances in shock wave focusing and induced detonation initiation. Journal of Propulsion Technology, 36: 1441-1458). [11] 黄伟, 王振国, 罗世彬, 柳军. 2009. 高超声速乘波体飞行器机身/发动机一体化关键技术研究. 固体火箭技术, 32: 242-248 (Huang W, Wang Z G, Luo S B, Liu J. 2009. An overview of research on engine/airframe integration for hypersonic waverider vehicles. Journal of Solid Rocket Technology, 32: 242-248). [12] 黄志澄. 1994. 空天飞机的乘波外形. 气动实验与测量控制, 6: 1-10 (Huang Z C. 1994. Waverider shapes for aerospace plane. Aerodynamic Experiment and Measurement & Control, 6: 1-10). [13] 姜宗林, 李进平, 赵伟, 刘云峰, 俞鸿儒. 2012. 长试验时间爆轰驱动激波风洞技术研究. 力学学报, 44: 824-831 (Jiang Z L, Li J P, Zhao W, Liu Y F, Yu H R. 2012. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels. Acta Mechanica Sinica, 44: 824-831). [14] 姜宗林, 俞鸿儒. 2009. 高超声速激波风洞研究进展. 力学进展, 39: 766-776 (Jiang Z L, Yu H R. 2009. Progress of the research on hypersonic shock tunnels. Advances in Mechanics, 39: 766-776). [15] 焦晓亮, 崔涛, 于达仁. 2012. 超声速气流中双楔块结构的激波反射滞后现象及突变模型//高超声速专题研讨会暨第五届全国高超声速科学技术会议论文集(Jiao X L, Cui T, Yu D R. 2012. Hysteresis behaviors of shock reflection in supersonic double-wedge flow and catastrophe model//Proceedings of 5th Chinese National Symposium on Hypersonic Technology). [16] 焦晓亮, 常军涛, 王仲奇, 于达仁. 2015. 高马赫数下高超声速进气道迟滞现象研究//第五届冲压发动机技术交流会. 厦门, 下册: 58-66 (Jiao X L, Chang J T, Wang Z Q, Yu D R. 2015. An investigation on the hysteresis behaviors under high Mach number flows//Proceedings of 5th Chinese National Symposium on Ramjet Engine Technology. Xiamen, China, 3: 58-66). [17] 乐嘉陵, 倪鸿礼. 1999 激波(爆炸波) 与物体相互作用的数值模拟. 流体力学实验与测量, 13: 1-9 (Le 574 力学进展第46 卷: 2016013 J L, Ni H L. 1999. Numerical simulation of shock (blast) wave interaction with bodies. Experiments and Measurements in Fluid Mechanics, 13: 1-9). [18] 李海鹏, 何立明, 陈鑫, 曾昊. 2010. 凹面腔内激波聚焦起爆爆震波过程的数值模拟. 推进技术, 31: 87-91 (Li H P, He L M, Chen X, Zeng H. 2010. Numerical investigation of detonation initiation by shock wave focusing over parabolic reflector. Journal of Propulsion Technology, 31: 87-91). [19] 李季. 2015. 高温非平衡效应下的激波干扰与激波反射. [博士论文]. 合肥: 中国科学技术大学(Li J. 2015. On shock interactions and reflections with high temperature non-equilibrium effects. [PhD Thesis]. Hefei: University of Science and Technology of China). [20] 李素循. 2007. 激波与边界层主导的复杂流动, 北京: 科学出版社(Li S X. 2007. Complex flows domi-nated by shock waves and boundary layers. Beijing: Beijing Science Press). [21] 李新亮, 傅德薰, 马延文, 梁贤. 2010. 压缩折角激波- 湍流边界层干扰直接数值模拟. 中国科学: 物理学力学天文学, 40: 791-799 (Li X L, Fu D X, Ma Y W, Liang X. 2010. A direct numerical simulation on shock wave-turbulent boundary layer interaction over a compression ramp. Scientia Sinica Physica, Mechanica & Astronomica, 40: 791-799). [22] 李新亮. 2015. 高超声速湍流直接数值模拟技术. 航空学报. 36: 147-158 (Li X L. 2015. Direct numerical simulation techniques for hypersonic turbulent flows. Acta Aeronautica et Astronautica Sinica, 36: 147-158). [23] 李宇飞, 何国强, 刘佩进. 2007. 一种辅助高超音速进气道起动方法研究. 固体火箭技术, 30: 392-395 (Li Y F, He G Q, Liu P J. 2007. Investigation on one aid hypersonic inlet starting method. Journal of Solid Rocket Technology, 30: 392-395). [24] 李祝飞, 高文智, 李鹏, 姜宏亮, 杨基明. 2013. 一种进气道自起动特性检测方法. 实验流体力学, 27: 14-18, 23 (Li Z F, Gao W Z, Li P, Jiang H L, Yang J M. 2013. A test method for inlet self-starting ability detection. Journal of Experiments in Fluid Mechanics, 27: 14-18, 23). [25] 李祝飞, 杨基明. 2016. 预设堵块法检测进气道自起动能力的数值研究. 推进技术, 10 (Li Z F, Yang J M. 2016. A numerical investigation of the pre-setting-blockage method to detect the self-starting ability of an inlet. Journal of Propulsion Technology, 10). [26] 李祝飞, 高文智, 李鹏, 姜宏亮, 杨基明. 2012. 二元高超声速进气道激波振荡特性实验. 推进技术, 33: 676-682 (Li Z F, Gao W Z, Li P, Jiang H L, Yang J M. 2012. Experimental investigation on the shock wave oscillation behaviors in a two-dimensional hypersonic inlet flow. Journal of Propulsion Technology, 33: 676-682). [27] 李祝飞. 2013. 高超声速进气道起动特性机理研究. [博士论文]. 合肥: 中国科学技术大学(Li Z F. 2013. An investigation on starting characteristics of hypersonic inlets. [PhD Thesis]. Hefei: University of Science and Technology of China). [28] 刘儒勋, 舒其望. 2003. 计算流体力学的若干新方法. 北京: 科学出版社, 42-76 (Liu R X, Shu Q W. 2003. Advances in Computational Fluid Mechanics. Beijing: Beijing Science Press, 42-76). [29] 罗喜胜, 翟志刚, 司廷, 杨基明. 2014. 激波诱导下的气体界面不稳定性实验研究. 力学进展, 44: 201407 (Luo X S, Zhai Z G, Si T, Yang J M. 2014. Experimental study on the interfacial instability induced by shock waves. Advances in Mechanics, 44: 201407). [30] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 2014. 激波与层流湍流边界层相互作用实验研究. 物理学报, 63: 084703 (Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z. 2014. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave. Acta Phys. Sin., 63: 084703). [31] 荣康, 何立明, 张建邦, 曾昊, 张强. 2012. 喷口导流环结构对激波聚焦起爆的影响分析. 推进技术, 33: 299-305 (Rong K, He L M, Zhang J B, Zeng H, Zhang Q. 2012. Investigation on the effects of [32] 杨基明, 李祝飞, 朱雨建, 翟志刚, 罗喜胜, 陆夕云: 激波的传播与干扰575 deflector structure on detonation initiation by shock wave focusing. Journal of Propulsion Technology, 33: 299-305). [33] 陶渊, 范晓樯. 2014. 二维定常激波反射迟滞现象研究进展// 第十六届全国激波与激波管学术会议论文集. 洛阳, 1: 75-82 (Tao Y, Fan X Q. 2014. Advances in two-dimensional shock reflection hysteresis in steady supersonic flows//The 16th Chinese National Symposium on Shock waves. Luoyang, 1: 75-82). [34] 陶渊, 刘卫东, 范晓樯. 2015. 进气道前体激波与唇口边界层相互作用流场结构分析// 第五届冲压发动机技术交流会. 厦门, 下册: 33-42 (Tao Y, Liu W D, Fan X Q. 2015. Analysis of the shock wave/boundary layer interactions near the cowl-lip of an inlet. Proceedings of 5th Chinese National Symposium on Ramjet Engine Technology. Xiamen, China, 3: 33-42). [35] 滕宏辉, 姜宗林, 韩肇元. 2004. 环形激波绕射、反射和聚焦的数值模拟研究. 力学学报, 36: 9-15 (Teng H H, Jiang Z L, Han Z Y. 2004. Numerical investigation of diffraction, focusing and reflection of toroidal shock waves. Acta Mechanica Sinica, 36: 9-15). [36] 滕宏辉, 王春, 邓博, 姜宗林. 2007. 可燃气体中激波聚焦的点火特性. 力学学报, 39: 171-180 (Teng H H, Wang C, Deng B, Jiang Z L. 2007. Ignition characteristics of the shock wave focusing in combustive gases. Chinese Journal of Theoretical and Applied Mechanics, 39: 171-180). [37] 王淦昌, 袁之尚. 1996. 惯性约束核聚变. 合肥: 安徽教育出版社, 96-125, 234-238 (Wang G C, Yuan Z S. 1996. Inertial Confinement Fusion. Hefei: Anhui Education Press. 96-125, 234-238). [38] 王国蕾, 陆夕云. 2012. 激波和湍流相互作用的数值模拟. 力学进展, 42: 274-281(Wang G L, Lu X Y. 2012. Numerical simulation of shock wave/turbulent boundary layer interactions. Advances in Mechanics, 42: 274-281). [39] 肖丰收, 李祝飞, 朱雨建, 杨基明. 2016. 带凹腔钝头体第IV 类激波干扰特性研究. 推进技术. 37: 1-7 (Xiao F S, Li Z F, Zhu Y J, Yang J M. 2016. Effects of forward-facing cavity on behaviors of type IV shock interaction of blunt body flows. Journal of Propulsion Technology, 37: 1-7). [40] 徐骁, 岳连捷, 卢洪波, 肖雅彬, 张新宇. 2015. 高超声速进气道快速破膜开启的流动特性. 航空学报, 36: 1795-1804 (Xu X, Yue L J, Lu H B, Xiao Y B, Zhang X Y. 2015. Flow characteristics of hypersonic inlet starting with diaphragm rupture. Acta Aeronautica et Astronautica Sinica, 36: 1795-1804). [41] 杨剑挺, 朱雨建, 詹东文, 杨基明. 2016. 收缩楔腔内激波汇聚诱导点火实验. 气体物理, 1: 25-30 (Yang J T, Zhu Y J, Zhan D W, Yang J M. Experiment on the shock-induced ignition in a converging wedged cavity. Physics of Gases. 1: 25-30). [42] 杨旸, 姜宗林, 胡宗民. 2012. 激波反射现象的研究进展. 力学进展, 42: 141-161 (Yang Y, Jiang Z L, Hu Z M. 2012. Advances in shock wave reflection phenomena. Advances in Mechanics, 42: 141-161). [43] 易仕和, 陈植, 朱杨柱, 何霖, 武宇. 2015. 高超声速流动试验技术及研究进展. 航空学报, 36: 98-119 (Yi S H, Chen Z, Zhu Y Z, He L, Wu Y. 2015. Progress of experimental techniques and studies on hypersonic/supersonic flows. Acta Aeronautica et Astronautica Sinica, 36: 98-119). [44] 岳连捷, 刘红, 徐骁, 彭辉, 张新宇. 2013. 激波风洞进气道自起动实验方法// 第九届全国实验流体力学学术会议论文集. 杭州(Yue L J, Liu H, Xu X, Zhang X Y. 2013. Self-starting characteristics of hypersonic inlets in shock tunnel//Proc. of 9th Chinese National Symposium on Experimental Fluid Mechanics. Hangzhou, China). [45] 张志雨, 肖丰收, 李祝飞, 朱雨建, 杨基明. 2016. 钝化V 形前缘激波干扰特性研究//第17 届全国激波与激波管学术会议. 成都(Zhang Z Y, Xiao F S, Li Z F, Zhu Y J, Yang J M. 2016. On shock-shock interaction of a V-shaped blunt leading edge//The 17th Chinese National Symposium on Shock waves. Chengdu, China). [46] 曾昊, 何立明, 章雄伟, 李海鹏, 陈鑫. 2010. 环形射流喷口位置对激波聚焦起爆的影响分析. 航空动力学报, 25: 1964-1970 (Zeng H, He L M, Zhang X W, Li H P, Chen X. 2010. Investigation on the influence of jet pressure on detonation initiation via imploding annular shock waves. Journal of Aerospace Power, 25: 1964-1970). [47] 曾昊, 陈鑫, 何立明, 吴春华. 2013. 凹面腔内二维激波会聚特性研究. 空气动力学学报, 31: 316-320 (Zeng H, Chen X, He L M, Wu C H. 2013. Investigation of two-dimensional shock wave focusing. Acta Aerodynamica Sinica, 31: 316-320). [48] 开云棋牌官方 激波与激波管专业委员会. 2014//第16 届全国激波与激波管学术会议论文集. 洛阳, 1: 1-726 (Division of Shock wave and Shock Tube, The Chinese Society of Theoretical and Applied Mechanics. 2014//Proceedings of 16th Chinese National Symposium on Shock Waves. Luoyang, China. 1: 1-726). [49] 朱建士, 胡晓棉, 王裴, 陈军, 许爱国. 2010. 爆炸与冲击动力学若干问题研究进展. 力学进展, 40: 400-423 (Zhu J S, Hu X M, Wang P, Chen J, Xu A G. 2010. A review on research progress in explosion mechanics and impact dynamics. Advances in Mechanics, 40: 400-423). [50] Abd-EL Fattah A M, Henderson L F. 1978a. Shock waves at a fast-slow gas interface. Journal of Fluid Mechanics, 86: 15-32. [51] Abd-EL Fattah A M, Henderson L F. 1978b. Shock waves at a slow-fast gas interface. Journal of Fluid Mechanics, 89: 79-95. [52] Ackeret, J F, Feldmann, Rott N. 1947. Investigations of compression shocks and boundary layers in gases moving at high speed. NACA-TM-1113. [53] Adamson T C, Messiter A F. 1980. Analysis of two-dimensional interactions between shock waves and boundary layers. Annual Review of Fluid Mechanics, 12: 103-138. [54] Albertson C, Venkat V. 2005. Shock interaction control for scramjet cowl leading edges. AIAA 2005-3289. [55] Anderson J D. 2006. Hypersonic and High-Temperature Gas Dynamics. Second Edition, AIAA Education, 449-462. [56] Anderson J, Lewis M, Kothari A. 1990. Hypersonic waveriders for planetary atmospheres. 28th Aerospace Sciences Meeting, AIAA-90-0538. [57] Andreopoulos Y, Agui, J H, Briassulis G. 2000. Shock wave-turbulence interactions. Annual Review of Fluid Mechanics, 32: 309-345. [58] ArnettWD, Bahcall J N, Kirshner R P,Woosley S E. 1989. Supernova 1987A. Annual Review of Astronomy and Astrophysics, 27: 629-700. [59] Babinsky H, Takayama K. 1998. The influence of entrance geometry of circular reflectors on shock wave focusing. Computers and Fluids, 27: 611-618. [60] Babinsky H, Harvey J K. 2011. Shock Wave-Boundary-Layer Interactions. Cambridge: Cambridge Univer-sity Press. [61] Baltrusaitis R M, Gittings M L, Weaver R P, Benjamin R F, Budzinski J M. 1996. Simulation of shock-generated instabilities. Physics of Fluids, 8: 2471-2483. [62] Bartenev A M, Khomik S V, Gelfand B E, Gronig H, Olivier H. 2000. Effect of reflection type on detonation initiation at shock-wave focusing. Shock Waves, 10: 205-215. [63] Belford R L, Strehlow R A. 1969. Shock tube technique in chemical kinetics. Annu. Rev. Phys. Chem., 20: 247-272. [64] Ben-Dor G, Igra O, Elperin T. 2001. Handbook of Shock Waves. New York: Academic Press. [65] Ben-Dor G. 2007. Shock Wave Reflection Phenomena. (2nd edition). New York: Springer Press. [66] Ben-Dor G. 2015. 30th International Symposium on Shock Waves. Tel-Aviv, Israel. http://www.ortra.com/ events/issw30/Home.aspx. [67] Berets D J, Greene E F, Kistiakows G B. 1950. Gaseous detonations. II. Initiation by shock waves. Journal of the American Chemical Society, 72: 1086-1091. [68] Bernard Finn S. 1964. Laplace and the speed of sound. ISIS Journal, 55: 7-19. [69] Biamino L, Jourdan G, Mariani C, Houas L, Vandenboomgaerde M, Souffland D. 2015. On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube. Experiments in [70] Fluids, 56: 26. [71] Bilbal L E, Gratton J. 1996. Spherical and cylindrical convergent shocks. Il Nuovo Cimento, 18: 1041-1060. [72] Boldyrev S M, Borovoy V Y, Chinilov A Y, Gusev V N, Struminskaya I V, Yakovleva L V, Delery J, Chanetz [73] B. 2001. A thorough experimental investigation of shock/shock interference in high Mach number flows. [74] Aerospace Science and Technology, 5: 167-178. [75] Bond C, Hill D J, Meiron D I, Dimotakis P E. 2009. Shock focusing in a planar convergent geometry: [76] Experiment and simulation. Journal of Fluid Mechanics, 641: 297-333. [77] Borisov A A, Zamanskii V M, Kosenkov V V, Lisyanskii V V, Skachkov G I, Troshin K Y, Gelfand B E. 1990. Ignition of gaseous combustible mixtures in focused shock waves. AIP Conference Proceedings, 208: 696-701. [78] Brouillette M. 2002. The Richtmyer-Meshkov instability. Annual Review of Fluid Mechanics, 34: 445-468. [79] Brouillette M, Sturtevant B. 1989. Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D, 37: 248-263. [80] Brouillette M, Sturtevant B. 1993. Experiments on the Richtmyer-Meshkov instability: Small-scale pertur-bations on a plane interface. Physics of Fluids A, 5: 916-930. [81] Brown C J, Thomas G O. 1999. Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures. Combustion and Flame, 117: 861-870. [82] Budzinski J M, Zukoski E E, Marble F E. 1992 Rayleigh scattering measurements of shock enhanced mixing. AIAA paper, 1992-3546. [83] Burcat A, Scheller K, Lifshitz A. 1971. Shock tube investigation of comparative ignition delay times for C1-C5 alkanes. Combustion and Flame, 16: 29-33. [84] Burcat A, Crossley R W, Scheller K, Skinner G B. 1972. Shock tube investigation of ignition in ethane-oxygen-argon mixtures. Combustion and Flame, 18: 115-123. [85] Chapman P R, Jacobs J W. 2006. Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability. Physics of Fluids, 18, 074101. [86] Charwat A F and Redekeopp L G. 1967. Supersonic Interference along the Corner of Intersecting Wedges. AIAA Journal, 5: 480-488. [87] Chaumeix N, Imbert B, Catoire L, Paillard C E. 2014. The onset of detonation behind shock waves of moderate intensity in gas phase. Combustion Science and Technology, 186: 4-5. [88] Chaussy C. 1987. Development of extracorporeal shock wave lithotripsy. In: Kandel L B, ed. Extracorporeal [89] Shock Wave Lithotripsy. New York: Future Publishing Co. 1-27. [90] Chester W. 1954. The quasi-cylindrical shock tube. Phil. Mag., 45: 1293-1301. [91] Chisnell R F. 1957. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. Journal of Fluid Mechanics, 2: 286-298. [92] Chu Y, Lu X. 2012. Characteristics of unsteady type IV shock/shock interaction. Shock Waves, 22: 225-235. [93] Clemens N T, Narayanaswamy V. 2014. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 46: 469-492. [94] Collins B D, Jacobs J W. 2002. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface. Journal of Fluid Mechanics, 464: 113-136. [95] Cooke D F, Williams A. 1975. Shock tube studies of methane and ethane oxidation. Combustion and Flame, 24: 245-256. [96] Courant R, Friedrichs K O. 1948. Supersonic Flow and shock waves. New York: Interscience Publishers, Pure and Applied Mathematics (Academic Press). [97] Degrez G. 1993. Special Course on Shock-Wave/Boundary-Layer Interactions in Supersonic and Hypersonicm Flows. AGARD REPORT, NATO AGARD R-792. [98] Debiève J F, Dupont P. 2009. Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves, 19: 499-506. [99] Délery J, Dussauge J P. 2009. Some physical aspects of shock wave/boundary layer interactions. Shock Waves, 19: 453-468. [100] Degrez G. 1993. Special course on shock-wave/boundary-layer interactions in supersonic and hypersonic flows. AGARD REPORT, NATO AGARD R-792. [101] Deville M, Le T H, Sagaut P. 2008. Special issue of the "Turbulence and Interaction" conference. Flow Turbulence Combust, 80: 1-2. [102] Dimotakis P E. 2005. Turbulent mixing. Annual Review of Fluid Mechanics, 37: 329-356. [103] Dimotakis P E, Samtaney R. 2006. Planar shock cylindrical focusing by a perfect-gas lens. Physics of Fluids, 18: 031705. [104] Dolling D S. 2001. Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 39: 1517-1531. [105] Dussauge J P, Piponniau S. 2008. Shock/boundary-layer interactions: Possible sources of unsteadiness. Journal of Fluids and Structures, 24: 1166-1175. [106] Dyke M, Guttmann A J. 1982. The converging shock wave from a spherical or cylindrical piston. Journal of Fluid Mechanics, 120: 451-462. [107] Earmshaw S. 1860. On the mathematical theory of sound (communicated in Nov. 1858). Phil. Trans. Roy. Soc. London, 150: 133-148. [108] Edney B. 1968. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Technical Report 115. [109] Edwards J R. 2008. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences, 44: 447-465. [110] Eliasson V, Apazidis N, Tillmark N, Lesser M B. 2006. Focusing of strong shocks in an annular shock tube. Shock Waves, 15: 205-217. [111] Eliasson V. 2007. On focusing of shock waves. Technical Reports from Royal Institute of Technology, Sweden. [112] Erskin D J, Nellis W J. 1991. Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature, 349: 317-319. [113] Ferri A. 1940. Experimental results with airfoils tested in the high-speed tunnel at Guidonia. NACA-TM-946. [114] Fraley G. 1986. Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction. Physics of Fluids, 29: 376-386. [115] Fujii N, Koshi, M Ando H, Asaba T. 1979. Evaluation of boundary layer effects in shock-tube studies of chemical kinetics. Int. J. Chem. Kinet., 11: 285-304. [116] Fureby C. 2008. Towards the use of large eddy simulation in engineering. Progress in Aerospace Sciences, 44: 381-396. [117] Gaitonde D, Shang J S. 1995. On the structure of an unsteady type IV interaction at Mach 8. Computers and Fluids, 24: 469-485. [118] Gaitonde D V. 2015. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 72: 80-99. [119] Gallis M A, Koehler T P, Torczynski J R, Plimpton S J. 2015. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability. Physics of Fluids, 27: 084105. [120] Ganapathisubramani B, Clemens N T, Dolling D S. 2007. Effects of upstream boundary layer on the unsteadiness of shock-induced separation. Journal of Fluid Mechanics, 585: 369-394. [121] Gao B, Wu Z N. 2010. A study of the flow structure for Mach reflection in steady supersonic flow. Journal of Fluid Mechanics, 656: 29-50. [122] Gardner J H, Book D L, Bernstain I B. 1982. Stability of imploding shocks in the CCW approximation. [123] Journal of Fluid Mechanics, 114: 41-58. [124] Garrison T J, Settles G S, Narayanswami N, Knight D D. 1996. Measurements of the triple shock wave turbulent boundary-layer interaction. AIAA Journal 34: 57-64. [125] Garrison T J, Settles G S, Narayanswami N, Knight D D. 1993. Structure of crossing-shock-wave turbulent-boundary-layer interactions. AIAA Journal, 31: 2204-2211. [126] Garrison T J, Settles G S, Narayanswami N, Knight D D. 1994. Laser interferometer skin-friction measure-ments of crossing-shock-wave turbulent-boundary-layer interaction. AIAA Journal , 32: 1234-1241. [127] Gaydon A G, Hurle I R. 1963. The shock tube in high temperature chemical physics. Journal of Chemical Education, 41: 114. [128] Gelfand B E, Khomik S V, Bartenev A M, Medvedev S P, Gronig H, Olivier H. 2000. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves, 10: 197-204. [129] Glass II. 1975. Shock Wave and Man. Toronto: Toronto University Press. [130] Goonko Y P, Kharitonov A M, Latypov A F, Mazhul I I, Rostand P, Yaroslavtsev M I. 2003. Structure of flow over a hypersonic inlet with side compression wedges. AIAA Journal, 41: 436-447. [131] Grainger A L, Boyce R R, Tirtey S C, Ogawa H, Paniagua G, Paris S. 2012. The unsteady flow physics of hypersonic inlet starting processes. AIAA 2012-5937. [132] Gray J A, Westbrook C K. 1994. High-temperature ignition of propane with MTBE as an additive: Shock tube experiments and modeling. J. Chem. Kinet., 26: 757-770. [133] Greene E F, Toennies J P. 1964. Chemical Reactions in Shock Waves. New York: Academic Press. [134] Guderley G. 1942. Starke kugelige und zylindrische VerdichtungsstÄosse in der NÄahe des Kugelmittelpunk bzw. der Zylinderachse. Luftfahrtforschung 19: 302-313. [135] Haas J F, Sturtevant B. 1987. Interaction of weak shock waves with cylindrical and spherical gas inhomo-geneities. Journal of Fluid Mechanics, 181: 41-76. [136] Hafner P. 1988. Strong convergent shock waves near the center of convergence. Siam J. Appl. Math., 48: 1244-1261. [137] Han Z Y, Yin X Z. 1992. Shock Dynamics. Beijing: Science Press. [138] Henderson L F. 1989. On the refraction of shock waves. Journal of Fluid Mechanics, 198: 365-386. [139] Henderson L F. 2001. General laws for propagation of shock waves through matter//Ben-Dor G, Igra O, Elperin T, eds. Handbook of Shock Waves. New York: Academic Press.1: 143-151. [140] Holmes R L, Grove J W, Sharp D H. 1995. Numerical investigation of Richtmyer-Meshkov instability using front tracking. Journal of Fluid Mechanics, 301: 51-64. [141] Hosseini S H R, Takayama K. 2010. Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves, 20: 1-7. [142] Hosseini S H R, Takayama K. 2005. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves, Physics of Fluids, 17: 084101. [143] Humble R A, Scarano F, van Oudheusden B W. 2009. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. Journal of Fluid Mechanics, 635: 47-74. [144] Izumi K, Aso S, Nishida M. 1994. Experimental and computational studies focusing process of shock waves reflected from parabolic reflectors. Shock Waves, 4: 213-222. [145] Jacobs J W. 1992. Shock-induced mixing of a light-gas cylinder. Journal of Fluid Mechanics, 234: 629-649. [146] Jacobs J W, Krivets V V. 2005. Experiments on the late-time development of single-mode Richtmyer-Meshkov instability. Physics of Fluids, 17: 034105. [147] Jackson S, Grunthaner M, Shepherd J. 2003. Wave implosion as an initiation mechanism for pulse detonation engines. AIAA Paper 2003-4820. [148] Jackson S, Shepherd J. 2002. Initiation systems for pulse detonation engines. AIAA Paper 2002-3627. [149] Jackson S I, Buraczewski P M, Shepherd J E. 2005. Initiation of detonations and deflagrations by shock reflection and focusing//20th ICDERS, Montreal, Canada. [150] Jackson S I, Shepherd J E. 2007. Detonation initiation via imploding shock waves in a tube//21st ICDERS, [151] July 23-27, Poitiers, France. [152] Jackson S I, Shepherd J E. 2008. Detonation initiation in a tube via imploding toroidal shock waves. AIAA [153] Journal, 46: 2357-2367. [154] Jiang Z L, Takayama K. 1998. Reflection and focusing of toroidal shock waves from coaxial annular shock tubes. Computers and Fluids, 27: 553-562. [155] Jiao X, Chang, J, Wang Z, Yu D. 2015. Mechanism study on local unstart of hypersonic inlet at high Mach number. AIAA Journal, 53: 3102-3112. [156] Jones M A, Jacobs J W. 1997. A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface. Physics of Fluids, 9: 3078-3085. [157] Kawamura R, Saito H. 1956. Reflection of shock waves-pseudo-stationary case. Journal of the Physical Society of Japan, 11: 584-592. [158] Keyes J W, Hains F D. 1973. Analytical and experimental studies of shock interference heating in hypersonic flows. NASA TN D-7139. [159] Khomik S V, Medvedev S P, Polenov A N, Gelfand B E. 2007. Conditions of detonation initiation by focusing shock waves in a combustible gas mixture. Combustion, Explosion, and Shock Waves, 43: 697-702. [160] Kisbige H, Tesbima K, Nishida M. 1992. Focusing of shock waves reflected from an axisymmetrically parabolic wall. Shock Waves, 1: 341-345. [161] Kjellander M. 2012. Energy concentration by converging shock waves in gases. Technical Reports from Royal Institute of Technology, Sweden. [162] Kjellander M, Tillmark N, Apazidis N. 2010. Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Physics of Fluids, 22: 116102. [163] Kim H D, Setoguchi T. 2007. Shock induced boundary layer separation//8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, Lyon, France, Invited Lecture: ISAIF8-IL142. [164] Knight D, Yan H, Panaras A G, Zheltovodov A. 2003. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39: 121-184. [165] Larsson J, Lele SK. 2009. Direct numerical simulation of canonical shock/turbulence interaction. Physics of Fluids, 21: 126101. [166] Latini M, Schilling O, Don W S. 2007. High-resolution simulations and modeling of reshocked single-mode RMI comparison to experimental data and to amplitude growth model predictions. Physics of Fluids, 19: 024104. [167] Layes G, Jourdan G, Houas L. 2003. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Physics Review Letters, 91: 174502. [168] Layes G, Jourdan G, Houas L. 2009. Experimental study on a plane shock wave accelerating a gas bubble. Physics of Fluids, 21: 074102. [169] Lee J H S. 2008. The Detonation Phenomenon. New York: Cambridge University Press. [170] Leyva I A, Tangirala V, Dean A J. 2003. Investigation of unsteady flow field in a 2-stage PDE resonator. AIAA 2003-0715. [171] Li X L, Zhang Q. 1997. A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear analysis in two and three dimensions. Physics of Fluids, 9: 3069-3077. [172] Li Z, Gao W, Jiang H, Yang J. 2013. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel. AIAA Journal, 51: 2485-2492. [173] Li Z, Huang B, Yang J. 2011. A novel test of starting characteristics of hypersonic inlets in shock tunnel. AIAA Paper 2011-2308. [174] Liepmann H W. 1946. The interaction between boundary layer and shock waves in transonic flow. Journal of the Aeronautical Sciences, 13: 623-637. [175] Likhachev O A, Tsiklashvili V. 2014. Integral constraints in the study of Richtmyer-Meshkov turbulent mixing. Physics of Fluids, 26, 102101. [176] Lindl J, Landen O, Edwards J, Moses E, Team N. 2014. Review of the national ignition campaign 2009-2012. Physics of Plasmas, 21: 020501. [177] Liverts M, Apazidis N. 2016. Limiting temperatures of spherical shock wave implosion. Physical Review Letters, 116: 014501. [178] Lombardini M, Pullin D I, Meiron D I. 2014a. Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. Journal of Fluid Mechanics, 748: 85-112. [179] Lombardini M, Pullin D I, Meiron D I. 2014b. Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. Journal of Fluid Mechanics, 748: 113-142. [180] Long C C, Krivets V V, Greenough J A, Jacobs J W. 2009. Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability. Physics of Fluids, 21: 114104. [181] Lu F, Marren D. 2002. Advanced hypersonic facilities//Zarchan P, ed. Progress in astronautics and aero-nautics. AIAA Inc, 198: 1-616. [182] Luo X, Ding J, Wang M, Zhai Z, Si T. 2015. A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Physics of Fluids, 27, 091702. [183] Luo X, Wang X, Si T. 2013.The Richtmyer-Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature. Journal of Fluid Mechanics, 722, R2. [184] Luo X, Wang M, Si T, Zhai Z. 2015. On the interaction of a planar shock with an SF6 polygon. Journal of Fluid Mechanics, 773: 366-394. [185] Ma Y B, Zhong X L. 2003. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. Journal of Fluid Mechanics, 488: 31-78. [186] Mahapatra D, Jagadeesh, G. 2009. Studies on unsteady shock interactions near a generic scramjet inlet. AIAA Journal, 47: 2223-2231. [187] Malamud G, Leinov E, Sadot O, Elbaz Y, Ben-Dor G, Shvarts D. 2014. Reshocked Richtmyer-Meshkov instability: Numerical study and modeling of random multi-mode experiments. Physics of Fluids, 26: 084107. [188] Marvin J G, Brown J L, Gnoffo P A. 2010. Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions. NASA/TM-2013-216604. [189] McFarland J A, Greenough J A, Ranjan D. 2013. Investigation of the initial perturbation amplitude for the inclined interface Richtmyer-Meshkov instability. Physica Scripta, 155: 014014. [190] McFarland J, Reilly D, Creel S, McDonald C, Finn T, Ranjan D. 2014. Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock. Experiments in Fluids, 55: 1640. [191] Meshkov E E. 1969. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 4: 101-104. [192] Meyer K A, Blewett P J. 1972. Numerical investigation of the stability of a shock accelerated interface between two fluids. Physics of Fluids, 15: 753-759. [193] Meyer J W, Oppenheim A K. 1971. On the shock-induced ignition of explosive gases//13th Symp (Int'l) on Combustion: 1153-1164. [194] Myers B F, Bartle E R. 1969. Reaction and ignition delay times in the oxidation of propane. AIAA Journal, 7: 1862-1869. [195] Mikaelian K O. 2015. Testing an analytic model for Richtmyer-Meshkov turbulent mixing widths. Shock Waves, 25: 35-45. [196] Mooradian A J, Gordon W E. 1951. Gaseous detonation. I. Initiation of detonation. The Journal of Chemical Physics, 19: 1166-1172. [197] Muylaert J A, Kumar, Christian D. 1998. Hypersonic experimental and computational capability, improve-ment and validation. Volume II. AGARD Advisory Report, NATO AGARD AR-319. [198] Ogawa H, Grainger A L, Boyce R R. 2010. Inlet starting of high-contraction axisymmetric scramjets. Journal of Propulsion and Power, 26: 1247-1258. [199] Olson B J, Greenough J. 2014. Large eddy simulation requirements for the Richtmyer-Meshkov instability. Physics of Fluids, 26, 044103. [200] Orlicz G C, Balakumar B J, Tomkins C D, Prestridge K P. 2009. A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain. Physics of Fluids, 21: 064102. [201] Panaras A G. 1996. Review of the physics of swept-shock boundary layer interactions. Progress in Aerospace Sciences, 32: 173-244. [202] Perkins L J, Betti R, LaFortune K N, Williams W H. 2009. Shock ignition: A new approach to high gain inertial confinement fusion on the national ignition facility. Physical Review Letters, 103: 045004. [203] Perry R W, Kantrowitz A. 1951. The production and stability of converging shock waves. J. Appl. Phys., 22: 878-886. [204] Petersen E L, Hanson R K. 2001. Non-ideal effects behind reflected shock waves in a high pressure shock tube. Shock Waves, 10: 405-420. [205] Piponniau S J, Dussauge P, Debieve J F, Dupont P. 2009. A simple model for low-frequency unsteadiness in shock-induced separation. Journal of Fluid Mechanics, 629: 87-108. [206] Pirozzoli S, Grasso F. 2006. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2:25. Physics of Fluids, 18: 065113. [207] Ponchaut N F, Hornung H G, Pullin D I, Mouton C A.2006. On imploding cylindrical and spherical shock waves in a perfect gas. Journal of Fluid Mechanics, 560: 103-122. [208] Radha C, Sharma V D. 1993. Imploding cylindrical shock in a perfectly conducting and radiating gas. Physics of Fluids B, 5: 4287. [209] Ranjan D, Anderson M H, Oakley J, Bonazza R. 2005. Experimental investigation of a strongly shocked gas bubble. Physics Review Letters, 94: 184507. [210] Ranjan D, Niederhaus J H J, Motl B, Anderson M H, Oakley J, Bonazza R. 2007. Experimental investigation of primary and secondary features in high-mach-number shock-bubble interaction. Physics Review Letters, 98: 024502. [211] Ranjan D, Oakley J, Bonazza R. 2011. Shock-bubble interactions. Annual Review of Fluid Mechanics, 43: 117-140. [212] Richtmyer R D. 1960. Taylor instability in shock acceleration of compressible fluids. Communication on Pure and Applied Mathematics, 13: 297-319. [213] Ringuette M J, Wu M, Mart-n M P. 2008. Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. Journal of Fluid Mechanics, 594: 59-69. [214] Roy C J, Blottner F G. 2006. Review and assessment of turbulence models for hypersonic flows. Prog. Aerospace Sci., 42: 469-530. [215] Sadot O, Erez L, Alon U, Oron D, Levin L A, Erez G, Ben-Dor G, Shvarts D. 1998. Study of nonlinear evo-lution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability. Physical Review Letters, 80: 1654-1657. [216] Saillard Y, Barbry H, Mournier C. 1985. Transformation of a plane uniform or spherical shock by wall shaping//Shock waves and shock tubes, Proc. 15th Intern. Symp., 147-154. Stanford, CA: Stanford University Press. [217] Samtaney R, Meiron D I. 1997. Hypervelocity Richtmyer-Meshkov instability. Physics of Fluids, 9: 1783-1803. [218] Saric W S, Muylaert J, Christian D. 1996. Hypersonic experimental and computational capability, improve-ment and validation Volume I. AGARD Advisory Report, NATO AGARD AR-319. [219] Schultz E, Shepherd J. 2000. Validation of detailed reaction mechanisms for detonation simulation. Explo-sion Dynamics Laboratory Report FM99-5, California Institute of Technology, USA. [220] Schwendeman D W, Whitham G B. 1987. On converging shock waves. Proc. R. Soc. Lond. A, 413: 297-311. [221] Setchell R E, Storm E, Sturtevant B. 1972. An investigation of shock strengthening in a conical converging channel. Journal of Fluid Mechanics, 56: 505-522. [222] Settles G S, Dodson L J. 1991. Hypersonic shock/boundary-layer interaction database. NASA-CR-177577. [223] Settles G S, Dodson L J. 1993. Hypersonic turbulent boundary-layer and free shear database. NASA-CR-177610. [224] Settles G S, Dodson L J. 1994. Hypersonic shock/boundary-layer interaction database. New and Corrected Data. NASA-CR-177638. [225] Settles G S, Dodson L J. 1994. Supersonic and hypersonic shock boundary-layer interaction database. AIAA Journal, 32: 1377-1383. [226] Sharp D H. 1984. An overview of Rayleigh-Taylor instability. Physical D, 12: 3-18. [227] Si T, Long T, Zhai Z, Luo X. 2015. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. Journal of Fluid Mechanics, 784: 225-251. [228] Si T, Zhai Z, Luo X. 2014. Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube. Laser and Particle Beams, 32: 343-351. [229] Si T, Zhai Z G, Yang J M, Luo X S. 2012. Experimental investigation of reshocked spherical gas interfaces. Physics of Fluids, 24: 054101. [230] Skews B, Gray B, Paton R. 2015. Experimental production of two-dimensional shock waves of arbitrary profile. Shock Waves, 25: 1-10. [231] Skews B W, Menon N, Bredin M. 2002. An experiment on imploding conical shock waves. Shock Waves, 11: 323-326. [232] Skews B W, Kleine H. 2007. Flow features resulting from shock wave impact in a cylindrical cavity. J. Fluid Mech., 580: 481-493. [233] Strehlow R A, Cohen A. 1962. Initiation of detonation. Physics of Fluids, 5: 97-101. [234] Strehlow R A, Dyner H B. 1963. One-dimensional detonation initiation. AIAA Journal, 1: 591-595. [235] Tahir R B, MÄolder, S and Timofeev E V. 2003. Unsteady starting of high mach number air inlets-A CFD study. AIAA Paper 2003-5191. [236] Takayama K, Onodera O, Hoshizawa Y. 1984. Experiments on the stability of converging cylindrical shock waves. Theor. Appl. Mech., 32: 305-329. [237] Takayama K, Kleine H, Gronig H. 1987. An experimental investigation of the stability of converging cylin-drical shock waves in air. Experiments in Fluids, 5: 315-322. [238] Tan H J, Li L G, Wen Y F, Zhang Q F. 2011. Experimental investigation of the unstart process of a generic hypersonic inlet. AIAA Journal, 49: 279-288. [239] Tao Y, Fan X, Zhao Y. 2014. Viscous effects of shock reflection hysteresis in steady supersonic flows. Journal of Fluid Mechanics, 759: 134-148. [240] Tomkins C D, Kumar S, Orlicz G C, Prestridge K P. 2008. An experimental investigation of mixing mechanisms in shock-accelerated flow. Journal of Fluid Mechanics, 611: 131-150. [241] Tomkins C D, Prestridge K P, Rightley P M, Marr-Lyon M, Vorobieff P, Benjamin R F. 2003. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders. Physics of Fluids, 15: 986-1004. [242] Tomkins C D, Prestridge K P, Rightley P M, Vorobieff P, Benjamin R F. 2002. Flow morphologies of two shock accelerated unstable gas cylinders. Journal of Visualization, 5: 273-283. [243] Tsang W, Lifshitz A. 1990. Shock tube techniques in chemical kietics. Annu. Rev. Phys. Chem., 41: 559-599. [244] Vandenboomgaerde M, Gauthier S, Mugler C. 2002. Nonlinear regime of a multimode Richtmyer-Meshkov instability: A simplified perturbation approach. Physics of Fluids, 14: 1111-1122. [245] Vandenboomgaerde M, Mugler C, Gauthier S. 1998. Impulsive model for the Richtmyer-Meshkov instability. Physical Review E, 58: 1874-1882. [246] Velikovich A L. 1996. Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefaction wave. Physics of Fluids, 8: 1666-1679. [247] Velikovicha A L, Dimonte G. 1996. Nonlinear perturbation theory of the incompressible Richtmyer-Meshkov instability. Physical Review Letters, 76: 3112-3115. [248] Voevodsky V V, Soloukhin R I. 1965. On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves//10 International Symposium on Combustion, The Comb. Institute, Pittsburgh, 279-283. [249] Wang M, Si T, Luo X. 2013. Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study. Experiments in Fluids, 54: 1427. [250] Wang T, Liu J H, Bai J S, Jiang Y, Li P, Liu K. 2012 Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave. Applied Mathematic and Mechanics, 33: 37-50. [251] Wang W, Guo R. 2013. Numerical study of unsteady starting characteristics of a hypersonic inlet. Chinese Journal of Aeronautics, 26: 563-571. [252] Wang Z, Zhao Y, Zhao Y, Fan X. 2015. Prediction of massive separation of unstarted inlet via free-interaction theory. AIAA Journal, 53: 1108-1112. [253] Watanabe M, Takayama K. 1991. Stability of converging cylindrical shock waves. Shock Waves, 1: 149-160. [254] Weirs V G, Dupont T, Plewa T. 2008. Three-dimensional effects in shock-cylinder interactions. Physics of Fluids, 20: 044102. [255] West J E, Korkegi R H. 1972. Supersonic interaction in the corner of intersecting wedges at high Reynolds numbers. AIAA Journal, 10: 652-656. [256] Whitham G B. 1957. A new approach to problems of shock dynamics. Part I. Two-dimensional problems. Journal of Fluid Mechanics, 2: 145-171. [257] Whitham G B. 1959. A new approach to problems of shock dynamics. Part 2. Three-dimensional problems. Journal of Fluid Mechanics, 5: 369-386. [258] Wouchuk J G, Nishihara K. 1996. Linear perturbation growth at a shocked interface. Physics of Plasmas, 3: 3761-3776. [259] Wieting A R, Holden M S. 1989. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8. AIAA Journal, 27: 1557-1565. [260] WuMW, MartinM P. 2008. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 594: 71-83. [261] Wyckham C M, Zaidi S H, Miles R B, Smits A. 2005. Measurement of aero-optic distortion in transonic and hypersonic, turbulent boundary layers with gas injection. AIAA Paper 2005-4775. [262] Yamashita H, Kasahara J, Sugiyama Y, Matsuo A. 2012. Visualization study of ignition modes behind bifurcated-reflected shock waves. Combustion and Flame, 159: 2954-2966. [263] Yang J, Kubota T, Zukoski E E. 1993. Applications of shock-induced mixing to supersonic combustion.AIAA Journal, 35: 854-862. [264] Yang Y, Zhang Q, Sharp D H. 1994. Small amplitude theory of Richtmyer-Meshkov instability. Physics of Fluids, 6: 1856-1873. [265] Yao Y, Li S G, Wu Z N. 2013. Shock reflection in the presence of an upstream expansion wave and a downstream shock wave. Journal of Fluid Mechanics, 735: 61-90. [266] Zabusky N J. 1999. Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. Annual Review of Fluid Mechanics, 31: 495-536. [267] Zhai Z G, Liu C L, Qin F H, Yang J M, Luo X S. 2010. Generation of cylindrical converging shock waves based on shock dynamics theory. Physics of Fluids, 22: 041701. [268] Zhai Z G, Si T, Luo X S, Yang J M. 2011. On the evolution of spherical gas interfaces accelerated by a planar shock wave. Physics of Fluids, 23: 084104. [269] Zhai Z G, Si T, Luo X S, Yang J M, Liu C L, Tan D W, Zou L Y. 2012. Parametric study on the cylindrical converging shock waves generated based on shock dynamics theory. Physics of Fluids, 24: 026101. [270] Zhai Z, Wang M, Si T, Luo X. 2014. On the interaction of a planar shock with a light polygonal interface. Journal of Fluid Mechanics, 757: 800-816. [271] Zhang Q, Graham M J. 1998. A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks. Physics of Fluids, 10: 974-992. [272] Zhang Q, Sohn S I. 1996. An analytical nonlinear theory of Richtmyer-Meshkov instability. Physical Letter A, 212: 149-155. [273] Zhang Q, Sohn S I. 1997. Nonlinear theory of unstable fluid mixing driven by shock wave. Physics of Fluids, 5: 1106-1124. [274] Zheltovodov A A. 1996. Shock waves/turbulent boundary-layer interactions-Fundamental studies and applications. AIAA Paper 1996-1977. [275] Zheltovodov A A. 2006. Some advances in research of shock wave turbulent boundary layer interactions. AIAA Paper 2006-496. [276] Zhong X. 1994. Application of essentially nonoscillatory schemes to unsteady hypersonic shock-shock inter-ference heating problems. AIAA Journal, 32: 1606-1616. [277] Zou L Y, Liu C L, Tan D W, Huang W B, Luo X S. 2010. On interaction of shock wave with elliptic gas cylinder. Journal of Visaulization, 13: 347-353.
点击查看大图
计量
- 文章访问数:2737
- HTML全文浏览量:227
- PDF下载量:2191
- 被引次数:0