-
摘要:五模材料是一种具有固体特征的复杂流体,可通过超材料技术由固体材料经过微结构精心设计近似得到.可调的模量各向异性和固体特征赋予五模材料优越的水声调控能力,在降低水下物体目标强度等领域有着重要潜在应用,因此受到了国内外工程和学术界关注.本文就五模材料基本概念、微结构设计、声波调控、加工制备等方面对该类材料的研究进展进行详细介绍,并对五模材料在工程中应用存在的问题进行了讨论,以期为后续相关研究者提供参考.Abstract:Pentamode materials, made of conventional solids through microstructure de-sign, may have acoustic property of complex fluid. Its superior capacity for underwater acoustic wave manipulation stimulates recently an intense research activity. In this review, pentamode materials and their recent progress are explained from di?erent angles: basic concept, microstructure design, acoustic applications and fabrication technology, in order to provide an overall view on this kind of special material.
-
Key words:
- pentamode material/
- microstructure design/
- anisotropy/
- acoustic cloak
-
[1] Amendola A, Smith C J, Goodall R, Auricchio F, Feo L, Benzoni G, Fraternali F. 2016. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Composite Structures, 142: 254. [2] Brun M, Guenneau S, Movchan A B. 2009. Achieving control of in-plane elastic waves. Applied Physics Letters, 94: 61903. [3] BÄuckmann T, Thiel M, Kadic M, Schittny R, Wegener M. 2014. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Communications, 5 [4] Cai C X,Wang Z H, Li Q W, Xu Z, Tian X G. 2015. Pentamode metamaterials with asymmetric double-cone elements. Journal of Physics D: Applied Physics, 17: 175103. [5] Chang Z, Hu G K. 2012. Elastic wave omnidirectional absorbers designed by transformation method. Applied [6] Physics Letters, 101: 54102. [7] Chang Z, Hu J, Hu G K, Tao R, Wang Y. 2011. Controlling elastic waves with isotropic materials. Applied [8] Physics Letters, 98: 121904. [9] Chang Z, Zhou X M, Hu J, Hu G K. 2010. Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries. Optics Express, 18: 6089-6096. [10] Chen H Y, Chan C T. 2007. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91: 183518. [11] Chen W Q, Bian Z G, Ding H J. 2004. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. International Journal of Mechanical Sciences, 46: 159-171. [12] Chen X Z, Luo Y, Zhang J J, Jiang K, Pendry J B, Zhang S A. 2011. Macroscopic invisibility cloaking of visible light. Nature Communications, 2 [13] Chen Y, Liu X N, Hu G K. 2015. Latticed pentamode acoustic cloak. Scientific Reports, 5: 15745. [14] Chen Y, Liu X N, Hu G K. Low Frequency resonance scattering of acoustic cloak with imperfect pentamode material. In preparation [15] Chen Y, Liu X N, Hu G K. Design of arbitrary shaped pentamode acoustic cloak based on nearly symmetric mapping gradient algorithm. Submitted [16] Cheng Y, Liu X J. 2008. Resonance effects in broadband acoustic cloak with multilayered homogeneous isotropic materials. Applied Physics Letters, 93: 71903. [17] Christensen J, de Abajo F J G. 2012. Anisotropic metamaterials for full control of acoustic waves. Physical [18] Review Letters, 108: 124301. [19] Climente A, Torrent D, Sáanchez-Dehesa J. 2012. Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100: 144103. 430 力学进展第46 卷: 201609 [20] Colquitt D J, Brun M, Gei M, Movchan A B, Movchan N V, Jones I S. 2014. Transformation elastodynamics and cloaking for flexural waves. Journal of the Mechanics and Physics of Solids, 72: 131-143. [21] Cummer S A, Schurig D. 2007. One path to acoustic cloaking. New Journal of Physics, 9: 45. [22] Cummer S A, Popa B, Schurig D, Smith D R, Pendry J B, Rahm M, Starr A. 2008. Scattering theory derivation of a 3D acoustic cloaking shell. Physical Review Letters, 100: 24301. [23] Ding Y Q, Liu Z Y, Qiu C Y, Shi J. 2007. Metamaterial with simultaneously negative bulk modulus and mass density. Physical Review Letters, 99: 93904. [24] Fan J R. 1996. Exact theory of strongly thick laminated plates and shells. [25] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X. 2006. Ultrasonic metamaterials with negative modulus. Nature Materials, 5: 452-456. [26] Farhat M, Enoch S, Guenneau S, Movchan A B. 2008. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Physical Review Letters, 101: 134501. [27] Farhat M, Guenneau S, Enoch S, Movchan A B. 2009. Cloaking bending waves propagating in thin elastic plates. Physical Review B, 79: 33102. [28] Flax L, Dragonette L R, ÄUberall H. 1978. Theory of elastic resonance excitation by sound scattering. The Journal of the Acoustical Society of America, 63: 723. [29] Gokhale N H, Cipolla J L, Norris A N. 2012. Special transformations for pentamode acoustic cloaking. The Journal of the Acoustical Society of America, 132: 2932-2941. [30] Han T C, Yuan T, Li B W, Qiu C W. 2013. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Scientific Reports, 3 [31] Hladky-Hennion A C, Vasseur J O, Haw G, Croenne C, Haumesser L, Norris A N. 2013. Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters, 102: 144103. [32] Hu J, Chang Z, Hu G K. 2011. Approximate method for controlling solid elastic waves by transformation media. Physical Review B, 84: 201101. [33] Huang Y, Lu X G, Liang G Y, Xu Z. 2016. Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes. Physics Letters A, 380: 1334-1338. [34] Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q. 2008. Cylindrical-to-plane-wave conversion via embedded optical transformation. Applied Physics Letters, 92: 261903. [35] Jiang X, Liang B, Zou X Y, Yin L L, Cheng J C. 2014. Broadband field rotator based on acoustic metama- terials. Applied Physics Letters, 104: 83510. [36] Kadic M, BÄuckmann T, Schittny R, Wegener M. 2013. On anisotropic versions of three-dimensional penta- mode metamaterials. New Journal of Physics, 15 [37] Kadic M, BÄuckmann T, Schittny R, Gumbsch P, Wegener M. 2014. Pentamode metamaterials with inde- pendently tailored bulk modulus and mass density. Physical Review Applied, 2: 54007. [38] Kadic M, BÄuckmann T, Stenger N, Thiel M, Wegener M. 2012. On the practicability of pentamode mechan- ical metamaterials. Applied Physics Letters, 100: 191901. [39] Kwon D, Werner D H. 2008. Polarization splitter and polarization rotator designs based on transformation optics. Optics Express, 16: 18731-18738. [40] Lai Y, Chen H Y, Zhang Z Q, Chan C T. 2009. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Physical Review Letters, 102: 93901. [41] Lai Y, Wu Y, Sheng P, Zhang Z Q. 2011. Hybrid elastic solids. Nature Materials, 10: 620-624. [42] Layman C N, Naify C J, Martin T P, Calvo D C, Orris G J. 2013. Highly anisotropic elements for acoustic 陈毅, 刘晓宁, 向平, 胡更开: 五模材料及其水声调控研究431 pentamode applications. Physical Review Letters, 111: 24302. [43] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. 2009. Acoustic metamaterial with negative density. Physics Letters A, 373: 4464-4469. [44] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. 2010. Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters, 104: 54301. [45] Leonhardt U. 2006. Optical conformal mapping. Science, 312: 1777-1780. [46] Li J, Chan C T. 2004. Double-negative acoustic metamaterial. Physical Review E, 70: 55602. [47] Li Y, Wu Y, Mei J. 2014. Double Dirac cones in phononic crystals. Applied Physics Letters, 105: 14107. [48] Liang Z, Li J. 2012. Extreme acoustic metamaterial by coiling up space. Physical Review Letters, 108: 114301. [49] Liu X N, Hu G K, Huang G L, Sun C T. 2011. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98: 251907. [50] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P. 2000. Locally resonant sonic materials. Science, 289: 1734-1736. [51] Luo J, Lai Y. 2014. Anisotropic zero-index waveguide with arbitrary shapes. Scientific Reports, 4: 5875 [52] Martin A, Kadic M, Schittny R, BÄuckmann T, Wegener M. 2012. Phonon band structures of three- dimensional pentamode metamaterials. Physical Review B, 86: 155116. [53] Milton G W, Cherkaev A V. 1995. Which elasticity tensors are realizable? Journal of Engineering Materials and Technology, 117: 483-493. [54] Milton G W, Briane M, Willis J R. 2006. On cloaking for elasticity and physical equations with a transfor- mation invariant form. New Journal of Physics, 8: 248. [55] Norris A N. 2008. Acoustic cloaking theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464: 2411-2434. [56] Norris A N. 2014. Mechanics of elastic networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470: 20140522. [57] Norris A N. 2009. Acoustic metafluids. The Journal of the Acoustical Society of America, 125: 839. [58] Norris A N. 1990. Resonant acoustic scattering from solid targets. The Journal of the Acoustical Society of America, 88: 505-514. [59] Norris A N, Nagy A J. 2011. Metal water: A metamaterial for acoustic cloaking//Proceedings of Phononics, Santa Fe, New Mexico, USA: 112-113. [60] Norris A N, Parnell W J. 2012. Hyperelastic cloaking theory: transformation elasticity with pre-stressed solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468: 2881- 2903. [61] Norris A N, Shuvalov A L. 2011. Elastic cloaking theory. Wave Motion, 48: 525-538. [62] Norris A N, Shuvalov A L, Kutsenko A A. 2012. Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468: 1629-1651. [63] Pendry J B, Holden A J, Stewart W J, Youngs I. 1996. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76: 4773. [64] Pendry J B, Schurig D, Smith D R. 2006. Controlling electromagnetic fields. Science, 312: 1780-1782. [65] Popa B, Zigoneanu L, Cummer S A. 2011. Experimental acoustic ground cloak in air. Physical Review Letters, 106: 253901. [66] Rahm M, Roberts D A, Pendry J B, Smith D R. 2008. Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16: 11555-11567. [67] Ren C Y, Xiang Z H, Cen Z Z. 2010. Design of acoustic devices with isotropic material via conformal transformation. Applied Physics Letters, 97: 44101. [68] Rohde C A, Martin T P, Guild M D, Layman C N, Naify C J, Nicholas M, Thangawng A L, Calvo D C, Orris G J. 2015. Experimental demonstration of underwater acoustic scattering cancellation. Scientific [69] Reports, 5: 13175. [70] Scandrett C L, Boisvert J E, Howarth T R. 2010. Acoustic cloaking using layered pentamode materials. The Journal of the Acoustical Society of America, 127: 2856-2864. [71] Scandrett C L, Boisvert J E, Howarth T R. 2011. Broadband optimization of a pentamode-layered spherical acoustic waveguide. Wave Motion, 48: 505-514. [72] Schittny R, BÄuckmann T, Kadic M,Wegener M. 2013. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Applied Physics Letters, 103: 231905. [73] Schittny R, Kadic M, Guenneau S, Wegener M. 2013. Experiments on transformation thermodynamics: molding the flow of heat. Physical Review Letters, 110: 195901. [74] Schmiele M, Varma V S, Rockstuhl C, Lederer F. 2010. Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81: 33837. [75] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. 2006. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314: 977-980. [76] Smith J D. 2011. Application of the method of asymptotic homogenization to an acoustic metafluid. Pro- ceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 467: 3318-3331. [77] Srivastava A, Nemat-Nasser S. 2014. On the limit and applicability of dynamic homogenization. Wave Motion, 51: 1045-1054. [78] Stenger N, Wilhelm M, Wegener M. 2012. Experiments on elastic cloaking in thin plates. Physical Review Letters, 108: 014301 [79] Tian Y,Wei Q, Cheng Y, Xu Z, Liu X J. 2015. Broadband manipulation of acoustic wavefronts by pentamode metasurface. Applied Physics Letters, 107: 221906. [80] Tichit P H, Burokur S N, de Lustrac A. 2009. Ultradirective antenna via transformation optics. Journal of Applied Physics, 105: 104912. [81] Titovich A S, Norris A N. 2014. Tunable cylindrical shell as an element in acoustic metamaterial. The Journal of the Acoustical Society of America, 136: 1601-1609. [82] Torrent D, Sanchez-Dehesa J. 2010. Anisotropic mass density by radially periodic fluid structures. Physical Review Letters, 105: 430117. [83] Wei Q, Cheng Y, Liu X J. 2013. Acoustic total transmission and total reflection in zero-index metamaterials with defects. Applied Physics Letters, 102: 174104. [84] Wu L Z, Gao P L. 2015. Manipulation of the propagation of out-of-plane shear waves. International Journal of Solids and Structures, 69-70: 383-391. [85] Wu Y, Lai Y, Zhang Z Q. 2007. Effective medium theory for elastic metamaterials in two dimensions. Physical Review B, 76: 205313. [86] Wu Y, Lai Y, Zhang Z. 2011. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters, 107: 105506. [87] Wu Y, Mei J, Sheng P. 2012. Anisotropic dynamic mass density for fluid-solid composites. Physica B: Condensed Matter, 407: 4093-4096. [88] Xiao Q J, Wang L, Wu T, Zhao Z G. 2014. Research on layered design of ring-shaped acoustic cloaking using bimode metamaterial. Applied Mechanics and Materials, 687-691: 4399-4404. [89] Xie Y, Popa B, Zigoneanu L, Cummer S A. 2013. Measurement of a broadband negative index with space- coiling acoustic metamaterials. Physical Review Letters, 110: 175501. [90] Yang M, Ma G C, Yang Z Y, Sheng P. 2013. Coupled membranes with doubly negative mass density and bulk modulus. Physical Review Letters, 110: 134301. [91] Zhang S, Genov D A, Sun C, Zhang X. 2008. Cloaking of matter waves. Physical Review Letters, 100: 123002. [92] Zhang S, Xia C G, Fang N. 2011. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 106: 24301. [93] Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G. 2015. Theoretical and numerical analysis of layered cylindrical pentamode acoustic cloak. Acta Physica Sinica, 64: 134301-134303. [94] Zheng L Y, Wu Y, Ni X, Chen Z G, Lu M H, Chen Y F. 2014. Acoustic cloaking by a near-zero-index phononic crystal. Applied Physics Letters, 104: 161904. [95] Zhou X M, Hu G K. 2009. Analytic model of elastic metamaterials with local resonances. Physical Review B, 79: 195109. [96] Zhou X M, Hu G K. 2011. Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass. Applied Physics Letters, 98: 263510. [97] Zhu R, Liu X N, Hu G K, Sun C T, Huang G L. 2014. Negative refraction of elastic waves at the deep- subwavelength scale in a single-phase metamaterial. Nature Communications, 5: 5510. [98] Zigoneanu L, Popa B, Cummer S A. 2014. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature materials, 13: 352-355. [99] Zigoneanu L, Popa B, Starr A F, Cummer S A. 2011. Design and measurements of a broadband two- dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109: 54906.
点击查看大图
计量
- 文章访问数:3065
- HTML全文浏览量:304
- PDF下载量:1395
- 被引次数:0