-
摘要:机器人或机电装备通常由电机模组、液压元件、齿轮和铰链等硬质部件构成,具有动力足、精度高等优点,但在实现低噪声、高安全系数与亲和性等方面存在挑战.受自然界生物体的柔软特性与高环境适应性的启发,设计制造软体机器人是近年来机器人领域的研究热点.作为软体机器人的核心构成部分,智能软材料可在外界不同刺激下产生不同响应,具有材料柔韧、生物相容性好、易于制备、价格低廉等优点,可广泛应用于机器人的设计与制造.几类典型的具备驱动功能的智能软材料与结构获得广泛的研究,包括气动软体肌肉、形状记忆合金/聚合物、离子交换聚合物、介电高弹体、响应水凝胶等.本文介绍了多种驱动类型的软体智能机器人研究成果,并从软体智能机器人的系统设计与力学建模两个方面进行了归纳分析与讨论.Abstract:The conventional machines and mechanical structures are usually composed of rigid parts such as motors, gears, and hinges. Possessing the advantages of sufficient power and high precision, those rigid robots still have challenges in low noise and high adaptability. Inspired by the soft structure and high environmental adaptability of natural organisms, the design, and manufacture of soft robots have been widely studied in the field of robotics. Soft smart materials can produce responses under various external stimulation. With the advantages of excellent flexibility, good biocompatibility, and easy manufacturing, soft smart materials can be widely used in the design and fabrication of bionic soft robots. Several types of soft smart materials and structures with the actuating function have been extensively studied recently, including the pneumatic soft muscle, shape memory alloy/polymer, ion-exchange polymer, dielectric high-elastic body, and responsive hydrogel. In this paper, various types of soft smart robots with different actuating methods are introduced, and the system design and mechanical modeling of soft smart robots are summarized and discussed.
-
Key words:
- robots/
- smart materials/
- mechanical modeling/
- system design
-
[1] 杜威 . 2008. SMA驱动的仿乌贼喷射推进器原型研究. [博士论文]. 哈尔滨: 哈尔滨工业大学(Du W . 2008. A prototype of squid like propeller driven by SMA. [Master Thesis]. Harbin: Harbin Institute of Technology). [2] 蒋国平, 孟凡昌, 申景金, 徐丰羽 . 2018. 软体机器人运动学与动力学建模综述. 南京邮电大学学报: 自然科学版, 38:21-26(Jiang G P, Meng F C, Shen J G, Xu F Y . 2018. Overview of kinematics and dynamics modeling of software robots. Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 38: 21-26). [3] 李健 . 2011. 仿生乌贼推进器及其流体动力仿真和实验研究. [博士论文]. 哈尔滨: 哈尔滨工业大学(Li J . 2011. Simulation and experimental investigation of biomimetic squidthruster. [PhD Thesis]. Harbin: Harbin Institute of Technology). [4] 王树新, 贠今天, 石菊荣, 刘又午 . 2002. 柔性机械臂建模理论与控制方法研究综述. 机器人, 24:86-92(Wang S X, Yuan J T, Shi J R, Liu Y W . 2002. Overview of modeling theory and control methods for flexible manipulators. Robot, 24: 86-92). [5] Bartlett N W, Michael T, Johannes T, James C. 2015. Soft robotics. a 3D-printed, functionally graded soft robot powered by combustion. Science, 349:161-165. [6] Behl M, Kratz K, Noechel U, Sauter T, Lendlein A. 2013. Temperature-memory polymer actuators. Proceedings of the National Academy of Sciences, 110:12555-12559. [7] Bunget G, Seelecke S. 2009. Actuator placement for a bio-inspired bonejoint system based on SMA. Active and Passive Smart Structures and Integrated Systems, 72880L. Bellingham: SPIE Press. [8] Chang Y C, Kim W J. 2013. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs. IEEE/ASME Transactions on Mechatronics, 18:547-555. [9] Chen L Y, Chen W J, Xue Y T. 2019. An untethered soft chemo-mechanical robot with composite structure and optimized control. Extreme Mechanics Letters, 27:27-33. [10] Cheng S, Narang Y S, Yang C, Suo Z G, Howe R D. 2019. Stick-on-large-strain sensors for soft robots. Advanced Materials Interfaces, 20:1900985. [11] Chu W S, Lee K T, Song S H. 2012. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 13:1281-1292. [12] Colorado J, Barrientos A, Rossi C. 2012. Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators. Bioinspiration and Biomimetics, 7:036006. [13] Deimel R, Brock O. 2016. A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35:161-185. [14] Farhan M, Rudolph T, N?chel U, Yan W, Kratz K, Lendlein A. 2017. Noncontinuously responding polymeric actuators. ACS Applied Materials & Interfaces, 9:33559-33564. [15] Fragouli D, Bayer I. 2012. Superparamagnetic cellulose fiber networks via nanocomposite functionalization. Journal of Materials Chemistry, 22:1662-1666. [16] Galloway K C, Becker K P, Phillips B, Kirby J, Licht S, Tchernov D, Gruber D F. 2016. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3:23-33. [17] Ge Q, Sakhaei A, Lee H. 2016. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep., 6:31110. [18] Gorissen B, Donose R. 2011. Flexible pneumatic micro-actuators: Analysis and production. Procedia Engineering, 25:681-684. [19] Guo S, Ge Y, Li L, Sheng L. 2006. Underwater swimming micro robot using IPMC actuator. International Conference on Mechatronics and Automation. IEEE. LuoYang, China, June 2006. [20] Hara F, Akazawa H, Kobayashi H. 2001. Realistic facial expressions by SMA driven face robot. IEEE International Workshop on Robot & Human Interactive Communication. IEEE. Roman, Feb. 2001. [21] Huang X N, Kumar K, Jawed M K. 2019. Highly dynamic shape memory alloy actuator for fast moving soft robots. Advanced Materials Technologies, 4:1800540. [22] Hunter I W, Madden J D, Vandesteeg N, Madden P G, Takshi A. 2004. Artificial muscle technology: Physical principles and naval prospects. IEEE. Journal of Oceanic Engineering, 29:706-728. [23] Ilievski F, Aaron D M. 2011. Soft robotics for chemists. Angewandte Chemie International Edition, 50:1890-1895. [24] Jin B, Song H, Jiang R. 2018. Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Science Advances, 4: eaao3865. [25] Jun S, Dario F. 2018. Soft biomimetic fish robot madme of dielectric elastomer actuators. Soft Robotics, 5:466-474. [26] Katzschmann R K, Marchese A D, Rus D. 2014. Hydraulic autonomous soft robotic fish for 3D swimming. Experimental Robotics. Springer Tracts in Advanced Robotics, 109. [27] Kim H J, Song S H, Ahn S H. 2012. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Materials and Structures, 22:014007. [28] Kramer R K, Majidi C, Wood R J. 2011. Wearable tactile keypad with stretchable artificial skin. IEEE International Conference on Robotics and Automation. Melbourne, Australia, Dec. 2011. [29] Lau G K, Heng K R, Ahmed A S, Shrestha M. 2017. Dielectric elastomer fingers for versatile grasping and nimble pinching. Applied Physics Letters, 110:182906. [30] Le H H, Kolesov I, Ali Z. 2010. Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. Journal of Materials Science, 45:5851-5859. [31] Lee J H, Chung Y S, Rodrigue H. 2019. Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Scientific Reports, 9. [32] Lendlein A, Kelch S. 2002. Shape-memory polymers. Angewandte Chemie International Edition, 4:2034-2057. [33] Li T F, Cheng T Y, Li G R. 2018. Untethered soft robotic jellyfish. Smart Materials and Structures, 28:015019. [34] Li T F, Keplinger C, Baumgartner R. 2013. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 61:611-628. [35] Li T F, Li G R, Liang Y M. 2017. Fast-moving soft electronic fish. Science Advances, 3:e1602045. [36] Li T F, Qu S X, Yang W. 2012. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. International Journal of Solids and Structures, 49:3754-3761. [37] Li H, Go G, Ko S Y, Park J O, Park S. 2016. Magnetic actuated ph-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 25:027001. [38] Li S, Vogt D M, Rus D, Wood R J. 2017. Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences, 114:13132-13137. [39] Liu B, Chen F, Wang S. 2017. Electromechanical control and stability analysis of a soft swim-bladder robot driven by dielectric elastomer. Journal of Applied Mechanics, 84:091005. [40] Luo K, Rothemund P, Whitesides G M, Suo Z G. 2019. Soft kink valves. Journal of the Mechanics and Physics of Solids, 131:230-239. [41] Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y. 2014. Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels. Advanced Materials, 26:5665-5669. [42] Majidi C, Shepherd R F, Kramer R K. 2013. Influence of surface traction on soft robot undulation. The International Journal of Robotics Research, 32:1577-1584. [43] Matthias B, Treitz S O, Staab H. 2010. Injury risk quantification for industrial robots in collaborative operation with humans. ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). Munich, Germany, 2010. [44] Michael T, Caleb C. 2018. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Science Robotics, 3: eaat1893. [45] Mirfakhrai T, John D W M, Ray H B. 2007. Polymer artificial muscles. Materials Today, 10:10-30. [46] Pei Q, Rosenthal M, Stanford S. 2004. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Materials and Structures, 13:86. [47] Qin H, Zhang T, Li N, Cong H P, Yu S H. 2019. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nature Communications, 10: 2202(1-11). [48] Renda F, Giorelli M, Calisti M, Cianchetti M, Laschi C. 2014. Dynamic model of a multibending soft robot arm driven by cables. IEEE Transactions on Robotics, 30:1109-1122. [49] Robertson M A, Sadeghi H, Florez J M, Paik J. 2017. Soft pneumatic actuator fascicles for high force and reliability. Soft Robotics, 4:23-32. [50] Rosset S, Niklaus P, Dubois M. 2008. Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sensors and Actuators A: Physical, 144:185-193. [51] Rothemund P, Ainla A, Belding L, Preston D J, Kurihara S, Suo Z, Whitesides G M. 2018. A soft, bistable valve for autonomous control of soft actuators. Science Robotics, 3:7986. [52] Rus D, Michael T. 2015. Design, fabrication and control of soft robots. Nature, 521:467-475. [53] Shepherd R F, Stokes A A, Freake J, Barber J, Snyder P W, Mazzeo A D. 2013. Using explosions to power a soft robot. Angewandte Chemie, 52:2892-2896. [54] Song Y S, Sun Y, van den Brand R, von Zitzewitz J, Micera S, Courtine G, Paik J. 2013. Soft robot for gait rehabilitation of spinalized rodents. IEEE/RSJ International Conference on Intelligent Robots and Systems, 971-976. Tokyo, Japan, Nov 2013. [55] Tadesse Y, Hong D, Priya S. 2011. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. Journal of Mechanisms and Robotics, 3:011008. [56] Trimmer B A, Takesian A E, Sweet B M. 2006. Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots. 7th International Symposium on Technology and the Mine Problem, 1: 1-10. Monterey, CA, May 2006. [57] Villanueva A, Smith C, Priya S. 2011. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspiration and Biomimetics, 6:036004. [58] Wang E, Desai M S, Lee S W. 2013. Light-controlled graphene-elastin composite hydrogel actuators. Nano Letters, 13:2826-2830. [59] Wang Z, Hang G, Wang Y. 2008. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Materials and Structures, 17:025039. [60] Wang Z, Wang Y, Li J. 2009. A micro biomimetic manta ray robot fish actuated by SMA. Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on. IEEE: 1809-1813. Guangxi, China, Dec 2009. [61] Wei J, Yu Y L. 2012. Photodeformable polymer gels and crosslinked liquid-crystalline polymers. Soft Matter, 8:8050-8059. [62] Wehner M, Truby R L, Fitzgerald D J. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536:451. [63] Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo Z W. 2004. Development of an artificial muscle linear actuator using ionic polymer-metal composites. Advanced Robotics, 18:17. [64] Yang T, Xiao Y, Zhang Z. 2018. A soft artificial muscle driven robot with reinforcement learning. Scientific Reports, 8:14518. [65] Yang X X, An C R, Liu S T, Cheng T Y, Bunpetch V, Liu Y X, Dong S R, Li S J, Zou X H, Li T F, Ouyang H W, Wu Z H, Yang W. 2018. Soft artificial bladder detrusor. Advanced Healthcare Materials, 7:1701014. [66] Zhang M Q, Li G R, Yang X X, Xiao Y H, Yang T, Li T F. 2018. Artificial muscle driven soft hydraulic robot: Electromechanical actuation and simplified modeling. Smart Materials and Structures, 27:095016. [67] Zhang Q M, Vivek B, Zhao X. 1998. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, 280:2101-2104. [68] Zhang X, Pint C L, Lee M H, Schubert B E, Jamshidi A, Takei K. 2011. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Letters, 11:3239-3244. [69] Zhao Q, Yang X, Ma C, Chen D, Bai H, Li T, Xie T. 2016. A bioinspired reversible snapping hydrogel assembly. Materials Horizons, 3:422-428. [70] Zhao X P, Zhao Q, Xiang L Q. 2003. Optical activity of microemulsion induced by electric field and its tunable behaviors. Science in China, 46:164-172. [71] Zheng C, Tae I, Hilary B. 2011. A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators A Physical, 168:131-139. [72] Zhou F H, Zhang M Q, Cao X N. 2019. Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame. Sensors and Actuators, A Physical, 292:112-120. [73] Zou J, Gu G Y. 2019. Dynamic modeling of dielectric elastomer actuators with a minimum energy structure. Smart Materials and Structures, 28:085039.
点击查看大图
计量
- 文章访问数:2456
- HTML全文浏览量:475
- PDF下载量:728
- 被引次数:0