ON THE POINCARE ′-CHETAEV EQUATIONS
-
摘要:研究表明:庞加莱-契达耶夫正则方程是非正则变量下相当普遍的哈密顿方程.这表明,多余坐标下的广义拉格朗日方程和广义哈密顿方程(其阶数低于带有不定乘子的方程),以及准坐标下的欧拉-拉格朗日方程,都是庞加莱-契达耶夫方程的特殊情况;从而,可将其理论推广到上述系统.而且还研讨了庞加莱-契达耶夫方程在非完整系动力学中的应用问题.
-
关键词:
- 庞加莱-契达耶夫方程/
- 可迁李群/
- 非正则坐
Abstract:This paper proves that the canonical equations of Poincarè-Chtaev are more general Hamilton equations in terms of noncanonical variables. This shows that the generalized Lagrange equations and the generalized Hamilton equations in terms of remainder coordinates, as well as the Euler-Lagrange equations in terms of quasi-coordinates are particular cases of the Poincarè-Chtaev equations. And then, the theory is extended to the above systems. The application of Poincarè-Chetaev equations in dynamics of nonholo...
点击查看大图
计量
- 文章访问数:1699
- HTML全文浏览量:124
- PDF下载量:955
- 被引次数:0