-
摘要:电磁霍普金森(E-Hopkinson)杆实验技术是利用电磁驱动的方式替代了传统霍普金森杆中子弹撞击加载杆来产生应力波, 是电磁驱动技术与霍普金森杆实验技术相结合而发展起来的一种新的动态加载技术. 本文综述了E-Hopkinson杆实验技术在单轴单向/双向及动态双轴对称压缩/拉伸、复合材料的层间断裂、金属动态包辛格效应等领域的应用现状, 涵盖了实验研究, 理论分析及数值模拟等, 最后对该实验技术未来发展方向进行了展望.Abstract:The e-Hopkinson bar test technology is a new dynamic loading technology developed by combining the electromagnetic drive technology with the Hopkinson bar test technology, which replaces the traditional Hopkinson bar with the bullet hitting the loading bar to generate stress waves. In this paper, the application status of e-Hopkinson bar test technology in uniaxial unidirectional/biaxial and dynamic biaxial symmetric compression/tension, interlaminar fracture of composites, dynamic bauschinger effect and other fields are reviewed, including experimental research, theoretical analysis and numerical simulation. Finally, the future development direction of e-Hopkinson bar test technology is prospected.
-
图 1Kolsky提出的实验装置示意图(Kolsky 1949)
图 2用于分离式Hopkinson压杆装置的电磁驱动装置原理图(Liu et al. 2014)
图 3微型双脉冲串联加载SHPB实验装置原理图(Huang et al. 2019)
图 4基于电磁加载的拉压杆集成装置原理图(Chen et al. 2014)
图 5单轴单向E-Hopkinson杆加载装置原理图(Nie et al. 2018a,2018b)
图 17(a)单向压缩实验的原始波形及(b)试样两端应力、应变率及应力平衡系数,R(t)-时间曲线(江斌等 2020)
图 18(a)动态双向压缩实验的原始波形及(b)试样两端应力、应变率及应力平衡系数,R(t)-时间曲线(江斌 等 2020)
图 21(a)动态DCB实验入射波与反射波, (b)试样加载过程中I型和II型能量释放率变化曲线(Liu et al. 2018)
图 28Ohtake等(1999)提出的三种十字型试样的夹持臂出现断裂失效而提出了三种解决方案. (a)切除部分区域, (b)减小测试区厚度, (c)试样臂上加工狭缝
-
[1] 郭伟国, 赵融, 魏腾飞, 等. 2010. 用于Hopkinson压杆装置的电磁驱动技术. 实验力学,25: 682-689 (Guo W G, Zhao R, Wei T F. 2010. Electromagnetic drive technology for Hopkinson bar presses.Experimental Mechanics,25: 682-689 (in Chinese)). [2] 江斌, 胡嘉奕, 郭亚洲, 等. 2020. 基于电磁Hopkinson杆的无机玻璃动态力学性能测试技术. 科学通报,65: 3475-3484 (Jiang B, Hu J Y, Guo Y Z, et al. 2020. Dynamic mechanical properties testing technology of inorganic glass based on Electromagnetic Hopkinson bar.Chinese Science Bulletin,65: 3475-3484 (in Chinese)).doi:10.1360/TB-2020-0223 [3] 李军, 严萍, 袁伟群. 2014. 电磁轨道炮发射技术的发展与现状. 高电压技术,40: 1052-1064 (Li J, Yan P, Yuan W Q. 2014. Development and actuality of electromagnetic rail gun firing technology.High Voltage Technology,40: 1052-1064 (in Chinese)). [4] 李玉龙, 聂海亮, 汤忠斌, 索涛. 2014a. 基于电磁力的霍普金森拉压杆应力波发生器及实验方法. 中国: CN103926138A, 2016-01-13Li Y L, Nie H L, Tang Z B, Suo T. 2014a. Hopkinson stress wave generator based on electromagnetic force and its experimental method. China: CN103926138A, 2016-01-13 (in Chinese) [5] 李玉龙, 聂海亮, 汤忠斌, 索涛, 吴蓓蓓. 2014b. 基于电磁力加载的分离式霍普金森压杆实验装置. 中国: CN103913382A, 2016-04-13Li Y L, Nie H L, Tang Z B, Suo T, Wu B B. 2014b. Separate Hopkinson pressure bar experiment device based on electromagnetic force loading. China: CN103913382A, 2016-04-13 (in Chinese) [6] 刘战伟, 吕新涛, 陈喜民, 等. 2013. 基于多级电磁发射的mini-SHPB装置. 实验力学,28: 557-562 (Liu Z W, Lü X T, Chen X M, et al. 2013. Mini-shpb device based on multistage electromagnetic emission.Experimental Mechanics,28: 557-562 (in Chinese)). [7] 牛润新, 何仁. 2006. 永磁式缓速器的稳健性设计. 江苏大学学报(自然科学版),27: 493-496.Niu R X, He R. 2006. Robust design of permanent magnet retarder.Journal of Jiangsu University(Natural Science Edition),27: 493-496. (in Chinese) [8] 宋玉普, 赵国藩. 1990. 平面应变状态下的混凝土变形和强度特性. 水利学报, 22-29 (Song Y P, Zhao G F. 1990. Deformation and strength characteristics of concrete under plane strain.Journal of Water Conservancy, 22-29 (in Chinese)).doi:10.3321/j.issn:0559-9350.1990.05.003 [9] 宋玉普, 赵国藩. 1994. 三向应力状态下钢纤维混凝土的强度特性及破坏准则. 土木工程学报,27: 14-23 (Song Y P, Zhao G F. 1994. Strength characteristics and failure criteria of steel fiber reinforced concrete under triaxial stress.Chinese Journal of Civil Engineering,27: 14-23 (in Chinese)). [10] 王传志, 过镇海, 张秀琴. 1987. 双轴和三轴受压混凝土的强度试验. 土木工程学报, 15-27 (Wang C Z, Guo Z H, Zhang X Q. 1987. Strength tests for biaxial and triaxial compression concrete.Chinese Journal of Civil Engineering, 15-27 (in Chinese)). [11] 王斌, 李夕兵, 尹士兵, 等. 2010. 饱水砂岩动态强度的SHPB试验研究. 岩石力学与工程学报,29: 1003-1009 (Wang B, Li X B B, Yin S B, et al. 2010. SHPB experimental study on dynamic strength of saturated sandstone.Chinese Journal of Rock Mechanics and Engineering,29: 1003-1009 (in Chinese)). [12] 谢倍欣, 汤立群, 姜锡权, 等. 2019. 用于软材料的双子弹电磁驱动SHPB系统. 爆炸与冲击,39: 69-75 (Xie B X, Tang L Q, Jiang X Q, et al. 2019. Dual bullet electromagnetic driven SHPB system for soft materials.Explosion and Shock,39: 69-75 (in Chinese)). [13] 谢祖荣, 车勇, 黄之初. 2002. 基于Matlab的RLC二阶电路零输入响应的研究. 武汉理工大学学报,24: 46-49 (Xie Z R, Che Y, Huang Z C. 2002. Study on response to zero input of the second order RLC circuit based on matlab.Journal of Wuhan University of Technology,24: 46-49 (in Chinese)).doi:10.3321/j.issn:1671-4431.2002.01.014 [14] 赵志衡, 汝楠, 马涌, 等. 2016. 强脉冲电磁力驱动的冲击载荷. 爆炸与冲击,36: 710-714 (Zhao Z H, Ru N, Ma Y, et al. 2016. Impact loads driven by strong pulsed electromagnetic force.Explosion and Shock,36: 710-714 (in Chinese)).doi:10.11883/1001-1455(2016)05-0710-05 [15] Bauschinger J. 1881. Changes of the elastic limit and the modulus of elasticity on various metals.Zivilingenieur,27: 289-348. [16] Bushway RR. 2001. Electromagnetic aircraft launch system development considerations.IEEE Transactions on Magnetics,37: 52-54.doi:10.1109/20.911789 [17] Chaves F J, de Moura M, da Silva L, Dillard D. 2014. Fracture characterization of bonded joints using the dual actuator load apparatus.Journal of Adhesion Science and Technology,28: 512-524.doi:10.1080/01694243.2013.845357 [18] Chen X M, Liu Z W, He G, et al. 2014. A novel integrated tension-compression design for a mini split Hopkinson bar apparatus.Review of Scientific Instruments,85: 676-476. [19] Davies R, Austin ER. 1970. Developments in High Speed Metal Forming. Machinery Publishing, 284 [20] Davies R M. 1948. A critical study of the Hopkinson pressure bar.Philosophical Transactions of the Royal Society of London. Series A. Mathematical Physical & Engineer Sciences,240: 375-457. [21] Demmerle S, Boehler J P. 1993. Optimal design of biaxial tensile cruciform specimens.Journal of the Mechanics and Physics of Solids,41: 143-181.doi:10.1016/0022-5096(93)90067-P [22] Deng J H, Tang C, Zhan Y R, et al. 2013. Distribution of magnetic flux density and magnetic force in EMR.Advanced Materials Research,652-654: 2248-2253. [23] Deng J H, Yu H P, Li C F. 2009. Numerical and experimental investigation of electromagnetic riveting.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,499: 242-247.doi:10.1016/j.msea.2008.05.049 [24] Duffy J, Campbell J D, Hawley R H. 1971. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum.Journal of Applied Mechanics,38: 83-91.doi:10.1115/1.3408771 [25] Hauser F E, Simmons JA, Dorn J E. 1961. Strain rate effects in plastic wave propagation. //Shewmon P G , Zackay V F, eds, Response of Metals to High Velocity Deformation, Interscience, New York, 93-114 [26] Hidayetoglu T K, Pica P N, Haworth W L. 1985. Aging dependence of the Bauschinger effect in aluminum alloy 2024.Materials Science and Engineering,73: 65-76. [27] Hopkinson B. 1914. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets.Philosophical Transactions of the Royal Society of London. Series A. Mathematical Physical&Engineer Sciences,213: 437-456. [28] Huang W K, Chen G X, Hu M B, et al. 2019. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch.Review of Scientific Instruments,90: 025110.doi:10.1063/1.5077051 [29] Huang W K, Huan S, Xiao Y, et al. 2017. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.Review of Scientific Instruments,88: 094703.doi:10.1063/1.5001844 [30] Jeremic R. 1999. Some aspects of time-temperature super-position principle applied for predicting mechanical properties of solid rocket propellants.Propellants, Explosives, Pyrotechnics,24: 221-223.doi:10.1002/(SICI)1521-4087(199908)24:4<221::AID-PREP221>3.0.CO;2-U [31] Kolsky H. 1949. An investigation of the mechanical properties of materials at very high rates of loading.Proceedings of the Physical Society Section B,62: 676-700.doi:10.1088/0370-1301/62/11/302 [32] Krafft J M, Sullivan A M, Tipper C F. 1954. The effect of static and dynamic loading and temperature on the yield stress of iron and mild steel in compression.Proceedings of the Royal Society of London. Series A.Mathematical and Physical Sciences,221: 114-127. [33] Liu H F, Nie H L, Zhang C, Li Y L. 2018. Loading rate dependency of Mode I interlaminar fracture toughness for unidirectional composite laminates.Composites Science and Technology,167: 215-223.doi:10.1016/j.compscitech.2018.07.040 [34] Lin S B, Ding J L, Zbib H M, Aifantis E C. 1993. Characterization of yield surfaces using balanced biaxial tests of cruciform plate specimens.Scripta Metallurgica et Materialia,28: 617-622.doi:10.1016/0956-716X(93)90206-8 [35] Liu Z W, Chen X M, Lü X T, et al. 2014. A mini desktop impact test system using multistage electromagnetic launch.Measurement,49: 68-76.doi:10.1016/j.measurement.2013.11.029 [36] Moan G D, Embury J D. 1979. A study of the Bauschinger effect in Al-Cu alloys.Acta Metallurgica,27: 903-914.doi:10.1016/0001-6160(79)90125-1 [37] Nie H L, Suo T, Shi X P, Liu H F, Li Y L, Zhao H. 2018b. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators.International Journal of Impact Engineering,122: 73-82.doi:10.1016/j.ijimpeng.2018.08.004 [38] Nie H L, Suo T, Wu B H, Li Y L, Zhao H. 2018a. A versatile split Hopkinson pressure bar using electromagnetic loading.International Journal of Impact Engineering,116: 94-104.doi:10.1016/j.ijimpeng.2018.02.002 [39] Ohtake Y, Rokugawa S, Masumoto H. 1999. Geometry determination of cruciform-type specimen and biaxial tensile test of C/C composites.Key Engineering Materials,164-1: 151-154. [40] Park H, Kim J Y. 2005. Plasticity model using multiple failure criteria for concrete in compression.Journal of Solids and Structures,42: 2303-2322.doi:10.1016/j.ijsolstr.2004.09.029 [41] Rittel D, Lee S, Ravichandran G. 2002. A shear-compression specimen for large strain testing.Experimental Mechanics,42: 58-64.doi:10.1007/BF02411052 [42] Silva C M A, Rosa P, Martins P. 2009. An innovative electromagnetic compressive split Hopkinson bar.International Journal of Mechanics and Materials in Design,5: 281-288.doi:10.1007/s10999-009-9101-y [43] Takatsu N, Kato M, Sato K, et al. 1988. High-speed forming of metal sheets by electromagnetic force.JSME International Journal,31: 142-148. [44] Thakur A, Nemat-Nasser S, Vecchio K S. 1996. Dynamic Bauschinger effect.Acta Metallurgica,44: 2797-2807. [45] Wang G, Chen X, Cai J, et al. 2016. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.Review of Scientific Instruments,87: 35-87. [46] Xie B X, Xu P D, Tang L Q, et al. 2019. Dynamic mechanical properties of polyvinyl alcohol hydrogels measured by double-striker electromagnetic driving SHPB system.International Journal of Applied Mechanics,11: 1950018. [47] Xie H P. Zhu J B. Zhou T. Zhang K. Zhou C T. 2020. Conceptualization and preliminary study of engineering disturbed rock dynamics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(2). DOI:10.1007/s40948-020-00157-x [48] Yu W, Wang P, Zhou C. 2009. General stress decomposition in nonlinear oscillatory shear flow.Journal of Rheology,53: 215-238.doi:10.1122/1.3037267 [49] Yu Y, Wan M, Wu X D, Zhou X B. 2002. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM.Journal of Materials Processing Technology,123: 67-70.doi:10.1016/S0924-0136(02)00062-6