ADVANCES IN PERTURBATION FINITE DIFFERENCE (PFD) METHOD
-
摘要:振动有限差分(PFD)方法,既离散徽商项也离散非微商项(包括微商系数),在微商用直接差分近似的前提下提高差分格式的精度和分辨率.PFD方法包括局部线化微分方程的摄动精确数值解(PENS)方法和摄动数值解(PNS)方法以及考虑非线性近似的摄动高精度差分(PHD)方法。论述了这些方法的基本思想、具体技巧、若干方程(对流扩散方程、对流扩散反应方程、双曲方程、抛物方程和KdV方程)的PENS、PNS和PHD格式,它们的性质及数值实验.并与有关的数值方法作了必要的比较.最后提出值得进一步研究的一些课题.Abstract:In the perturbation finite difference (PFD) method both the differentials and non- differential terms in the differential equation studied are discretized. High accuracy and high resolution difference schemes are obtained with the differentials being approximated by the direct differences (i.e., second-order-accurate center difference and first-order-accurate upwind difference). PFD method includes the perturbation exact numerical solution (PENS) scheme for locally lin- earized differential equation and t...
点击查看大图
计量
- 文章访问数:1840
- HTML全文浏览量:108
- PDF下载量:839
- 被引次数:0