RECENT DEVELOPMENTS IN DIMENSION REDUCTION METHODS FOR HIGH-DIMENSION DYNAMICAL SYSTEMS
-
摘要:综述近年来非线性动力系统降维理论与方法的研究现状.主要介绍非线性动力系统现有降维方法的基本思想、特点与局限性;这些方法包括: 基于中心流形理论的降维方法, Lyapunov-Schmidt (L-S)方法, 非线性Galerkin方法和本征正交分解技术(proper orthogonaldecomposition, POD)方法;并简单介绍了基于规范形理论和快慢流形动力系统的降维方法.最后提出关于高维非线性动力系统降维的一些新设想,并讨论了今后研究工作的方向.Abstract:The currentachievements in dimension reduction of nonlinear dynamic systemsare reviewed. The basic concepts, features and limitations areelucidated for the existing dimension reduction methods ofnonlinear dynamic systems. In addition to the typical dimensionreduction methods (such as the model reduction method based oncenter manifold theorem, the Lyapunov-Schmidt method, the Galerkinmethod and the method of proper orthogonal decomposition), themethods in terms of normal form and slow-fast dynamics are brieflypresented. Finally, new ideas on the dimension reduction ofhigh-dimensional dynamical systems are proposed, and futureresearch directions are discussed.
点击查看大图
计量
- 文章访问数:3004
- HTML全文浏览量:155
- PDF下载量:1289
- 被引次数:0