ADVANCES IN THE RESEARCH ON PROBABILITY DENSITY EVOLUTION EQUATIONS OF STOCHASTIC DYNAMICAL SYSTEMS
-
摘要:从概率密度演化的基本思想出发,阐述了概率密度演化方程的历史、进展与应用.文中首先剖析和澄清了概率守恒原理的物理意义,论述了概率守恒原理的随机事件描述和状态空间描述,并由此阐明了概率密度演化与系统物理演化的内在联系, 即:系统的物理状态演化构成了概率密度演化的内在机制. 在此基础上,结合概率守恒原理的两类描述以及系统状态的物理演化方程,以与历史上不同的方式,重新推导了经典概率密度演化方程,包括Liouville方程、FPK方程和Dostupov-Pugachev方程,进一步阐明了这些方程的物理意义, 以及它们不能降阶的原因.结合概率守恒原理的随机事件描述和解耦的系统物理方程,导出了广义概率密度演化方程. 分析了广义概率密度演化方程的物理意义.以非线性结构随机反应的概率密度演化分析为例,展示了概率密度演化理论的应用前景. 最后,指出了需要进一步研究的问题.Abstract:Based on the ideas ofprobability density evolution, the history, development andapplications of the probability density evolution equations areelaborated in this paper. First, the physical meaning of theprinciple of preservation of probability is clarified, and theprinciple is then presented in terms of random event descriptionand state space description, respectively. Meanwhile, theintrinsic relationship between the probability density evolutionand the physical evolution of the system is elucidated, i.e. thephysical state evolution of the system is the inherent mechanismunderlying the probability density evolution.By incorporating the two descriptions of the principle ofpreservation of probability into the physical evolution equationsof the stochastic system, the classical probability density evolutionequations including the Liouville equation, FPK equation and theDostupov-Pugachev equation are revisited via methodologiesdifferent from the existing ones. The physical meaning of theseequations is clarified together with the reason why their dimensioncannot be reduced. Moreover, combining the random eventdescription of the principle of preservation of probability withthe uncoupled physical equation leads to the generalized densityevolution equation with its physical sense exposed. Theapplication of the probability density evolution theory isexemplified by the probability density evolution analysis of theresponse of nonlinear structures, and the problems in need offurther studies are pointed out at the end of paper.
点击查看大图
计量
- 文章访问数:3267
- HTML全文浏览量:143
- PDF下载量:2579
- 被引次数:0