-
摘要:爆轰现象的研究已经有一百多年的历史了,爆轰物理的研究取得了许多重要进展.本文从爆轰波的经典理论、胞格爆轰波的多波结构、气相爆轰波形成机理、气相爆轰波传播机制等方面综述了相关的若干研究进展,评述了这些进展的科学性与局限性,并探讨了将来可能的研究方向.这些研究进展主要包括:CJ(Chapman-Jouguet)理论和ZND(Zel'dovich,von Neumann,Döring)模型、爆轰波多波结构、爆轰胞格特征、直接起爆和爆燃转爆轰过程、热点起爆机制、爆轰波稳定性、扰动爆轰波的传播等.爆轰波是以超声速传播的自持燃烧现象,涉及了激波相互作用、燃烧化学反应、湍流扩散和流动不稳定性等复杂的气动物理过程,相关研究具有重要的学科理论意义.另外,爆轰燃烧具有高效的热化学能释放特点,在先进的热力推进技术方面有着重要的应用背景,因此相关研究也具有重要的工程应用价值.Abstract:Research on the detonation phenomena has been conducted for over one hundred years, and many important progresses in the detonation physics have been achieved. In this paper, the classic detonation theories and the multi-wave structure of cellular detonation are reviewed as well as the mechanism of detonation initiation and propagation. Then scientific meaning and limitation are commented and potential future research directions are pointed out. These progresses include the CJ theory and ZND model, detonation multi-wave structure, characteristics of the detonation cell, direct initiation and DDT, hot spot initiation mechanism, detonation stability, the propagation of the disturbed detonation, et al. Gaseous detonations are self-sustained supersonic combustion phenomena, involving shock wave interaction, combustion chemical reactions, turbulence, and hydrodynamic instability. Therefore they are very complicated and have also meaningful theoretical importance. On the other hand, the detonation achieves very efficient heat release and has potential applications in the advanced thermal propulsion technology, which constitutes important engineering background for related studies.
-
1 Kailasanath K. Recent developments in the research on pulse detonation engines. AIAA Journal, 2003, 41(2):145-159 2 Roy G E, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci, 2004, 30(6): 545-672 3 Viguier C, Gourara A, Desbordes D. There-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. Proceedings of the Combustion Institute,1998, 27(2): 2207-2214 4 Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA Journal, 2001, 39(8): 1553-1561 5 Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogenoxygen mixture in flow-type combustors. Combustion, Explosion and Shock Waves, 2009, 45(6): 716-728 6 Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine. In: Roy G, Frolov S, Sinibaldi J. eds. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006. 332-338 7 Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19(1): 1-10 8 俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程. 力学进展, 2005, 35(3): 315-322 9 Jiang Z, Zhao W, Yu H R. Demonstration of some concepts for developing long-test duration shock tunnels. In: Proceedings of 28th Symp on Shock Waves, July 16-23,2011 10 Hillebrandt W, Niemeyer J C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys., 2000,38(1): 191-230 11 Berthelot M, Vieille E. On the velocity of propagation of explosive processes in gases. C. R. Hebd. Sceances Acad. Sci., 1881, 93: 18-21 12 Chapman D L. On the rate of explosion in gases. Philos. Mag., 1899, 47: 90-104 13 Jouguet E. On the propagation of chemical reactions in gases. J. De Mathematiques Pures et Appliqquees, 1905,1: 347-425 14 Zel’dovich Y B. On the theory of the propagation of detonation in gaseous systems. Journal of experimental and theoretical physics, 1940, 10: 543-568 15 von Neumann J. Theory of detonation waves. In: John von Neumann. Collected Works. Vol.6, ed. A.J. Taub. New York: Macmillam, 1942 16 Döring W. On detonation processes in gases. Ann. Phys.,1943, 43: 421-436 17 White D R. Turbulent structure in gaseous detonations. Phys. Fluids, 1961, 4: 465-480 18 Soloukhin R. Multi-headed structure of gaseous detonation. Combust. Flame, 1965, 9: 51-58 19 Wang C, Jiang Z, Gao Y. Half -cell law of regular cellular detonation. Chinese Physics Letters, 2008, 25(10):3704-3707 20 Liu Y, Jiang Z. Reconsideration on the role of the specific heat ratio in Arrhenius law applications. Acta Mechanic Sinica, 2008, 24(1): 261-266 21 Lee J H S. Initiation of gaseous detonation. Ann. Rev. Phys. Chem, 1977, 28: 75-104 22 Zel’dovich Y B, Librovich V B, Makhviladze G M, et al. On the development of detonation in a non-uniformly preheated gas. Astronautica Acta, 1970, 15: 312-321 23 Lee J H S, Lee B H K, Knystautas R. Direct initiation of cylindrical gaseous detonations. Phys. Fluids, 1966, 9:221-222 24 Lee J H S. Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech., 1984, 16: 311-336 25 Lee J H S, Knystautas R, Frieman A. High-speed turbulent deflagration and transition to detonation in H2-Air mixtures. Combust. Flame, 1984, 56: 227-239 26 Urtiew P, Oppenheim A K. Experimental observation of the transition to detonation in an explosive gas. Proc. Roy. Soc. A, 1966, 295: 13-28 27 Lee J H S, Higgins A J. Comments on criteria for direct initiation of detonation. Phil. Trans. R. Soc. Lond. A,1999, 357: 3503-3521 28 Radulescu M I, Higgins A J, Murray S B. An experimental investigation of the direction initiation of cylindrical detonations. J. Fluid Mech., 2003, 480(1): 1-24 29 Lee J H S, Knystautas R, Yoshikawa N. Photochemical initiation of gaseous detonations. Acta Astronautica, 1978,5:971-982 30 Thomas G O, Jones A. Some observations of the jet initiation of detonation. Combust. Flame, 2000, 120: 392-398 31 Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame, 1999, 119: 400-416 32 Bartenev A M, Gelfand B E. Spontaneous initiation of detonations. Progress in Energy and Combustion Science,2002, 26: 29-55 33 Montgomery C J, Khokhlov A M, Oran E S. The effect of mixing irregularities on mixed-region critical length for deflagration-to-detonation transition. Combust. Flame,1998, 115: 38-50 34 Sharpe G J, Short M. Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model. J. Fluid Mech., 2003, 476: 267-292 35 Ng H D, Lee J H S. Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech., 2003, 476(1):179-211 36 Gu X J, Emerson D R, Bradley D. Modes of reaction front propagation from hot spots. Combust. Flame, 2003, 133:63-74 37 Teng H, Jiang Z. Gasdynamics characteristics of toroidal shock and detonation waves focusing. Science in China Series G-Physics and Astronomy, 2005, 48(6): 739-749 38 王春, 张德良, 姜宗林. 多障碍物通道中激波诱导气相爆轰 的数值研究. 力学学报, 2006, 38(5): 586-592 39 Oran E S, Gamezo V N. Origins of the deflagration-todetonation transition in gas-phase combustion. Combust. Flame, 2007, 148: 4-47, 586-592 40 Brailovsky I, Sivashinsky G. Hydraulic resistance as a mechanism for deflagrationto-detonation transition. Combust. Flame, 2000, 122: 492-499 41 Kagan L, Sivashinsky G. The transition from deflagration to detonation in thin channels. Combust. Flame, 2003,134: 389-397 42 Kaneshige K, Shepherd J E. Detonation database, explosion dynamics laboratory report FM97-8. California Institute of Technology, Pasadena, CA, September, 1999 43 Gavrikov A I, Efimenko A A, Dorofeev S B. A model for detonation cell size prediction from chemical kinetics. Combust. Flame, 2000, 120: 19-33 44 Oran E S, Weber J W, Stefaniw E I, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combust. Flame, 1998,113: 147-163 45 Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 1999, 9: 11-17 46 Gamezo V N, Desbordes D, Oran E S. Formation and evolution of two-dimensional cellular detonations. Combust. Flame, 1999, 116: 154-165 47 Radulescu M I, Lee J H S. The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame, 2002, 131: 29-46 48 Sharpe G J. Transverse waves in numerical simulations of cellular detonations. J. Fluid Mech., 2001, 447(1): 31-51 49 Pintgen F, Eckett C A, Austin J M, et al. Direct observations of reaction zone structure in propagating detonations. Combust. Flame, 2003, 133: 211-229 50 Mass L, Austin J M, Jackson T L. Triple-point shear layers in gaseous detonation waves. J. Fluid Mech., 2007,586(2): 205-248 51 Jiang Z, Han G, Wang C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations. Combust. Flame, 2009, 156(8): 1653-1661 52 Williams D N, Bauwens L, Oran E S. Detailed structure and propagation of three-dimensional detonations. Proceedings of the Combustion Institute, 1996, 26(2): 2991-2998 53 Tsuboi N, Katoh S, Hayashi A K. Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures. Proceedings of the Combustion Institute, 2002, 29(2): 2783-2788 54 Tsuboi N, Eto K, Hayashi A K. Detailed structure of spinning detonation in a circular tube. Combust. Flame, 2007,149: 144-161 55 Tsuboi N, Daimon Y, Hayashi A K. Three-demensional numerical simulation of detonations in coaxial tubes. Shock Waves, 2008, 18(5): 379-392 56 Li C, Kailasanath K, Oran E S. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6(4): 1600-1611 57 Choi J Y, Kim D W, Jeung I S. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute,2007, 31(2): 2473-2480 58 董刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性 研究. 兵工学报, 2010, 31(4): 401-408 59 Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations. Journal of Propulsion and Power, 2006,22(6) : 1204-1216 60 张旭东, 范宝春, 归明月, 等. 旋转爆轰的三维结构和侧向稀 疏波的影响. 爆炸与冲击, 2010, 30(4): 338-341 61 邵业涛, 王健平, 唐新猛, 等. 连续旋转爆轰发动机流场三维 数值模拟. 航空动力学报, 2010, 25(8): 1717-1722 62 Erpenbeck J J. Stability of idealized one-reaction detonations. Phys. Fluids, 1964, 7: 684-696 63 Erpenbeck J J. Nonlinear theory of two-dimensional detonations. Phys. Fluids, 1970, 13: 2007-2026 64 He L, Lee J H S. The dynamical limit of one-dimensional detonations. Phys. Fluids, 1995, 7(5): 1151-1158 65 Sharpe G J, Falle S A E G. One-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. A, 1999, 455: 1203-1214 66 Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combustion Theory and Modelling, 2005, 9: 385-401 67 Short M, Quirk J J. On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J. Fluid Mech., 1997, 339(1):89-119 68 Watt S D, Sharpe G J. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech., 2005, 522: 329-356 69 Clavin P, He L, Willams F A. Multidimensional stability analysis of overdriven gaseous detonations. Phys. Fluids,1997, 9 (12): 3764-3785 70 Clavin P, Denet B. Diamond patterns in the cellular front of an overdriven detonation. Physical Review Letters,2002, 88: 044502 71 Yao J, Stewart D S. On the dynamics of multi-dimensional detonation waves. J. Fluid Mech., 1996, 309: 225-275 72 Stewart D S. The shock dynamics of multidimensional condensed and gas-phase detonations. Proceedings of the Combustion Institute, 1998, 27(2): 2189-2205 73 Ohyagi S, Obara T, Hoshi S, et al. Diffraction and reinitiation of detonations behind a backward-facing step. Shock Waves, 2002, 12: 221-226 74 Jones D A, Kemister G, Tonello N A, et al. Numerical simulation of detonation reignition in H2-O2 mixtures in area expansions. Shock Waves, 2000, 10: 33-41 75 Arient M, Shepherd J E. A numerical study of detonation diffraction. J. Fluid Mech., 2005, 529: 117-146 76 李辉煌, 朱雨建, 杨基明. 爆轰波通过扩张喷管的双曝光全 息实验和数值研究. 爆炸与冲击, 2005, 25(5): 445-450 77 邓博, 胡宗民, 滕宏辉, 等. 变截面管道中爆轰胞格演变机 制的数值模拟研究. 中国科学G 辑: 物理学力学天文学,2008, 38(2): 206-216 78 Li H, Ben-Dor G. A modified CCW theory for detonation waves. Combust. Flame, 1998, 113(1): 1-12 79 Thomas G O, Williams R L. Detonation interaction with wedges and bends. Shock Waves, 2002, 11: 481-492 80 Guo C M, Zhang D L, Xie W. The mach reflection of a detonation based on soot track measurements. Combust. Flame, 2001, 127: 2051-2058 81 胡宗民, 高云亮, 张德良, 等. 爆轰波在楔面上反射数值分析. 力学学报, 2004, 7(4): 385-392 82 Hu Z, Jiang Z. Wave dynamic processes in cellular detonation reflection from wedges. Acta Mechanica Sinica,2007, 23(1): 33-41 83 Chao J, Lee J H S. The propagation mechanism of high speed turbulent deflagrations. Shock Waves, 2003, 12:277-289 84 朱雨建, 杨基明, Lee J H S. 两种不同气体中的高速爆燃波 及其向爆轰的转变. 实验力学, 2008, 23(2): 110-117 85 Wang C J, Xu S L, Guo C M. Gaseous detonation propagation in a bifurcated tube. J. Fluid Mech., 2008, 599(1):81-110 86 王昌建, 徐胜利, 费立森, 等. 弯管内爆轰波传播的流场显示 和数值模拟. 力学学报, 2006, 38(1): 9-15
点击查看大图
计量
- 文章访问数:2133
- HTML全文浏览量:129
- PDF下载量:1810
- 被引次数:0