FUNDAMENTAL CHARACTERISTICS OF THREE TYPES OF DETONATION WAVES UTILIZED IN PROPULSION
-
摘要:爆轰发动机研究的关键技术之一是如何将其控制在燃烧室内.根据控制手段的不同,爆轰发动机可大致分为:驻定爆轰发动机、脉冲爆轰发动机和旋转爆轰发动机.存在于燃烧室的爆轰,在宏观和精细结构以及自持机理等方面皆不同于CJ(Chapman Jouget)理论为基础的经典爆轰.本文将对此类无害爆轰的特征结构进行分析、比较与评述,这对了解爆轰理论和研制爆轰发动机是有益的.Abstract:How to confine detonations in a combustor is one of key issues in the study of detonation engines. Based on the controll schemes, the detonation engines can be divided into oblique detonation wave engine (ODWE), pulsed detonation engine (PDE) and rotating detonation engine (RDE). The detonation confined in the combustor is different with that described by the classic CJ theory in the aspects of general and fine structures and its self-sustaining mechanisms. In the present paper, analysis, comparison and review are performed on the fundamental structures of harness detonations, which is of help for the understanding and research on detonation engines.
-
1 Humphrey H A. An internal-combustion pump and other applications of a new principle. Proceedings of the Institution of Mechanical Engineers, 1909, 77: 1075-1200 2 Bussing T, Hiukey J B, Kaye L. Pulse detonation engine Preliminary design considerations. AIAA paper 1994-3220, 1994 3 Roy G E, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci, 2004, 30(6): 545-72 4 Nikitin V F, Dushin V R, Phylippov Y G, et al. Pulse detonation engines: technical approaches. Acta Astron,2009, 64(2-3): 281-287 5 Brophy C M, Sinibaldi J O, Damphousse P. Initiator performance for liquid-fueled pulse detonation ngines. AIAA paper 2002-0472, 2002 6 Ciccarelli G, Johansen C, Hickey M C. Flame acceleration enhancement by distributed ignition points. J Prop Power, 2005, 21(6): 1029-1034 7 Jackson S I, Shepherd J E. Detonation initiation in a tube via imploding toroidal shock waves. AIAA J, 2008, 46(9):2357-2367 8 Owens Z C, Hanson R K. Single-cycle unsteady nozzle phenomena in pulse detonation engines. J Prop Power,2006, 23(2): 325-337 9 Zhu D, Fox D S, Miller R A, et al. Effect of surface impulsive loads on fatigue behavior of constant volume propulsion engine combustor materials. Surface Coatings Tech,2003, 188-189: 13-19 10 Caldwell N, Glaser A, Gutmark E. Acoustic measurements of multiple pulse detonation engines firing out of phase. AIAA paper 2007-0445, 2007 11 Ishii K, Kataoka H, Kojima T. Initiation and propagation of detonation waves in combustible high speed flows. Proceedings of the Combustion Institute, 2009, 32: 2323-2330 12 Vasilev A A, Zvegintsev V I, Nalivaichenko D G. Detonation waves in a reactive supersonic flow. Combustion, Explosion and Shock Waves, 2006, 42(5): 568-581 13 Yi T H, Wilson D R, Lu F K. Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber. Paper No.10041, 25th International Symposium on Shock Waves, Bangalore, India, 2004. 17-22 14 潘振华, 范宝春, 归明月, 等. 流动系统中爆轰波传播特性的 数值模拟. 爆炸与冲击, 2010, 30(6): 593-597 15 Cambier J L, Adelman H, Menees G P. Numerical simulations of an oblique detonation wave engine. J Prop Power,1990, 6(3): 315-323 16 Ashford S A, Emanuel G. Oblique detonation wave engine performance prediction. J Prop Power, 1996, 12(2):322-327 17 Sislian J P, Schirmer H, Dudebout R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. J Prop Power, 2001,17(3): 599-604 18 Morris C I, Kamel M R, Hanson R K. Shock-induced combustion in high-speed wedge flows. In: Proc. 27th Symp on Combustion, 1998. 2157-2164 19 Viguier C, Gourara A, Desbordes D. Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. In: Proc. 27th Symp on Combustion1998. 2207-2214 20 Berlyand A T, Vlasenko V V, Svishchev S V. Stationary and nonstationary wave structures that arise in stabilization of detonation over a compression surface. Combustion, Explosion and Shock Waves, 2001, 37(1): 82–98 21 Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA Journal, 2001, 39(8): 1553-1561 22 Kamel M B, Morris C I, Stouklov I G, et al. PLIF Imaging of hypersonic reactive flow around blund bodies. In: Proc. 26th Symp on Combustion, 1996. 2909-2915 23 Kasahara J, Arai T, Chiba S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures. Proc Combust,2002, 29: 2817-2824 24 Maeda S, Inada R, Kasahara J, et al. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc Combust,2011, 33(2): 2343-2349 25 Choi J Y, Kim D W, Jeung I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc Combust, 2007, 31: 2473-2480 26 Choi J Y, Shin E, Jeung I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave. Proc Combust, 2009, 32:2387-2396 27 Papalexandris M V. A numerical study of wedge-induced detonations. Combustion and Flame, 2002, 120: 526-538 28 Kaneshige M J. Gaseous detonation initiation and stabilization by hypervelocity projectiles: [Ph D Theses]. California: California Institute of Technology, 1999 29 Gui M Y, Fan B C, Dong G. Periodic oscillaon and fine structure of wedge-induced oblique detonation waves. Acta Mechanica Sinica, 2011, 27(6): 922-928 30 Nicholls J A, Dabora E K, Gealler R A. Studies in connection with stabilized gaseous detonations waves. Proc Combust, 1959, 11: 766-772 31 Voitsekhovskii B V. Stationary detonation. Doklady USSR Academy Sci, 1959, 129(6): 1254-1256 32 Bykowski F A, Mitrofanov V V, Vedernikov E F. Continuous detonation combustion of fuel–air mixtures. Combustion. Explos. Shock Waves, 1997, 33: 344-353 33 Bykovskii F A, Zhdan S A, Verdernikov E F. Continuous spin detonation in ducted annular combustors. In: Roy G, Frolov S. eds. Application of Detonation to Propulsion, Torus Press, Moscow, 2004. 174-179 34 Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogenoxygen mixture in flow-type combustors. Combustion, Explosion, and Shock Waves, 2009, 45(6): 716-728 35 Lentsch A, Bec R, Serre L. Overview of current French activities on PDRE and continuous detonation wave rocket engines. AIAA 2005-3232, 2005 36 Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine. In: Roy G, Frolov S, Sinibaldi J. eds. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006. 332-338 37 Daniau E, Falempin F, Getin N, et al. Design of a continuous detonation wave engine for space application. AIAA2006-4794, 2006 38 Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19: 1-10 39 Zhdan S A, Bykovskii F A, Vedernikov E F. Mathmatical modeling of a rotating detonation wave in a hydrogenoxygen mixture. Combustion, Explosion, Shock Waves,2007, 43: 449-459 40 Pan Z H, Fan B C, Zhang X D, et al. Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combustion and Flame, 2011,158(11): 2220-2228
点击查看大图
计量
- 文章访问数:1812
- HTML全文浏览量:102
- PDF下载量:1391
- 被引次数:0