-
摘要:爆轰物理学科仍然是以实验为主的一门科学,爆轰测试技术的不断进步仍然是爆轰物理学科发展的主要推动力.本文在阐述凝聚态炸药爆轰性能主要几个研究方面的基础上,从光学测试技术和电学测试技术两个方面系统介绍了凝聚态炸药爆轰测试技术及其应用.通过对现代爆轰测试技术进展的阐述,分析了凝聚态炸药爆轰测试研究面临的问题,展望了爆轰测试技术的发展前景.Abstract:Detonation physics is an experimental branch of sciences which is propelled by the development of test methods. In this paper, recent studies of condensed explosive detonation performance were elaborated, and the test techniques of condensed explosive and its application were both systematically presented from optical and electrical aspects. With detailed descriptions and analysis of the progress of test methods, development directions of the measurement and test technique are suggested.
-
Key words:
- explosion mechanics/
- solid explosive/
- testing method
-
1 张宝平, 张庆明, 黄风雷. 爆轰物理学. 北京: 兵器工业出版 社, 2001 2 花成, 黄明, 黄辉, 等. RDX/HMX 炸药晶体内部缺陷表征 与冲击波感度研究. 含能材料, 2010, 18(2): 152-157 3 赵科佳, 刘明亮, 郁月华, 等. 宽带取样示波器上升时间与带 宽的转换系数研究. 计量学报, 2006, 27(2): 160-163 4 Voitkiv A B, Najjari B, Ullrich J. Mechanism for electron transfer in fast Ion-Atomic collisions. Physics Review Letters,2008, 101(22): 1-4 5 Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface. Journal of Applied Physics, 1972, 43: 4669-4675 6 McMillan C F, Goosman D R, Parker N L, et al. Velocimetry of fast surfaces using Fabry–Perot interferometry. Review Scientific Instruments, 1988, 59(1): 1-20 7 Crouzet B L, Bouriannes R, Baudin G, et al. Ultra-fast optical pyrometer for the measurement of detonating explosive temperature. The European Physical Iournal Applied Physics, 1999, 8(2): 189-194 8 Gilev S D, Trubachev A M. Detonation properties and electrical conductivity of explosive-metal additive mixtures. Combustion, Explosion, and Shock Waves, 2002, l38(2): 219-234 9 章冠人, 陈大年. 凝聚炸药起爆动力学. 北京: 国防工业出版 社, 1991 10 李银成. 非均质炸药冲击起爆和起爆后的行为. 高压物理学 报, 2006, 20(1): 102-108 11 杨涛, 夏智勋, 雷必文. 发射药在强约束条件下的DDT 特 性. 推进技术, 1995, 6: 66-73 12 Olsem E M, Rosenberg J T, Kawamoto J D, et al. XDT investigations by computational simulations of mechanical response using a new viscous internal damage model. In: Proceedings of 11th Symposium on Detonation. Snow mall village, Colorado, 1998. 170-178 13 Urizar M J, Peterson S W, Smith L C. Detonation sensitivity tests. Los Alamos Scientific Laboratory Report, LA-7193-MS, 1978 14 Liddiand T P. The initiation of burning in high explosives by shock waves. In: Proceedings of 4th Symposium on Detonation. Silver Spring, Maryland, 1965. 487-495 15 Gittings E F. Initiation of a solid high explosive by a shortduration shock. In: Proceedings of 4th Symposium on Detonation. Silver Spring, Maryland, 1965. 373-380 16 董海山, 周芬芬. 高能炸药及相关物性能. 北京: 科学出版 社, 1989 17 Campbell A W, DavisWC, Travis J R. Shock initiation of detonation in liquid explosives . Physics of Fluids, 1961,4(4): 498 18 Bernecker R R, Sandusky H W, Clairmont A R, et al. Deflagration to detonation transition studies of porous explosive charges in plastic tubes. In: Proceedings of 7th Symposium on Detonation.Annapolis, Maryland, 1981. 119-142 19 Bernecker R R, Price D. Burning to detonation transition in porous beds of a high-energy propellant. Combustion and Flame, 1982, 48: 219-231 20 Green L G, James E, Lee E L, et al. Delayed detonation in propellants from low velocity impact. In: Proceedings of 7th Symposium on Detonation. Annapolis, Maryland,1981. 256-264 21 柯加山, 陈朗, 冯长根. 低冲击条件下凝聚炸药延迟起爆现象 的研究进展. 火炸药学报, 2002, 20: 35-38 22 Jameson R L, Hawkins A. Shock velocity measurements in inert monitors placed on several explosives. In: Proceedings of 5th Symposium on Detonation. Pasadena, California,1970. 23-30 23 Rigdon J K, Akst I B. An analysis of the “aquarium technique” as a pression detonation pressure measurement gauge. In: Proceedings of 5th Symposium on Detonation. Pasadena, California, 1970. 48-54 24 Gustavsen R L, Sheffield S A, Alcon R R, et al. Embedded electromagnetic gauge measurements and modeling of shock initiation in the TATB based explosives LX-17 and PBX 9502. Furnish M D, Thadhani N N, Horie Y. In: Shock Compression of Condensed Matter-2001. American Institute of Physics (AIP). 2000. 1019-1022 25 Fuller P J A, Price J H. Electrical conductivity of manganin andiron at high pressures. Nature, 1962, 193(1):262-263 26 阎军, 徐更光, 于长青. 光纤光谱技术在炸药爆温测量中的应 用. 北京理工大学学报, 2000, 20(4): 492-495 27 Schmidt S C, Moore D S, Shaner J W. Raman spectroscopies in shock-comressed materials. In: Asay J R, Graham R A, Straub G K. eds. Shock Waves in Condensed Matter-1983. North-Holland: University of Michigan,1984. 293-302 28 Bloomquist P D. Thermocouple temperature measurements in shock intiated PBX-9404. In: Proceedings of 7th Symposium on Detonation. Annapolis, Maryland, 1982.1004-1009 29 蒋小华. 有氧化剂含铝炸药爆轰特征研究: [硕士论文]. 北 京: 北京理工大学, 2003 30 Tasker D G, Granholm R H, Lee R J. The fast measurement of electrical conductivity structure within the detonation zone of condensed explosive. In: Schmidt S C, Holmes N C. eds. Shock Waves in Condensed Matter. Elsevier Science Publishers, Amsterdam, 1987. 561-564 31 王翔. 高能炸药爆温及反应区结构研究: [硕士论文]. 长沙: 国防科学技术大学, 2005 32 Bdzil J B, Stewart D S. Modeling two-dimensional detonation with detonation shock dynamics. Physics Fluids A, 1989 , 1(7): 126121267 33 柏劲松, 李平, 钟敏, 等. 以DSD 理论和LS 方法为基础的 程序燃烧法. 爆炸与冲击, 2008, 28(5): 402-406 34 吴艳红. 非均质凝聚态炸药冲击波临界起爆现象研究: [博士 论文]. 长沙: 湖南大学, 2006 35 黄毅民, 鲁斌, 韩勇. TATB 基PBX 炸药拐角实验与数值模 拟. 见: 第八届全国爆炸力学学术会议文集, 井冈山, 2007 36 Bdzil J B, Stewart D S. Detonation shock dynamics: the onion-skin geometry. In: Los Alamos Internal Report, M-9-QR-86-3, 1986 37 卢校军, 王蓉, 黄毅民, 等. 两种含铝炸药做功能力与JWL 状态方程研究. 含能材料, 2005, 13(3): 144-147 38 陈朗, 龙新平, 冯长根, 等. 含铝炸药爆轰. 北京: 国防工业 出版社, 2004 39 Smith L C. On brisance and plate-denting test for the estimation of detonation pressure. Explsivstoffe, 1967, 5:106-110 40 Yeh Y, Cummins H Z. Localized fluid flow measurements with an He-Ne laser spectrometer. Applied Physics Letters,1964, 4(10): 176-178 41 Munson D E, Barker L M. Dynamically determined pressure-volume relationships for aluminum, copper and lead. Journal of Applied Physics, 1966, 37(4): 1652-1660 42 Oswald R B, Mclean D R, Schallhorn D R, et al. OneDimensional thermoelastic response of solids to pulsed energy deposition. Journal of Applied Physics, 1971, 42(8):3463-3474 43 Goosman D R. Analysis of the laser velocity interferometer. Journal of Applied Physics, 1975, 46(8): 3516-3524 44 Hemsing W F. Velocity interferometer (VISAR) modification. Review Scientific Instruments, 1979, 50(l): 73-78 45 Levin L, Tzach D. Fiber optic velocity interferometer with very short coherence length light source. Review Scientific Instruments, 1996, 67(4): 1434-1437 46 Strand O T, Berzins L V, Goosman D R, et al. Velocity using heterodyne techniques. UCRL-CONF-206034, 2004 47 CAEP-IFP-DISAR-01 全光纤激光干涉测速仪. 爆炸与冲 击, 2009, 4: 443 48 龙新平. VLW 爆轰产物状态方程及纳米基铝粉含铝炸药爆 轰特性研究: [博士论文]. 北京: 北京理工大学, 1999 49 何碧, 蒋小华, 李泽仁, 等. 用双灵敏度VISAR 测试爆炸箔 起爆器的飞片速度. 爆炸与冲击, 2005, 25(1): 31-34 50 李志鹏, 黄毅民, 龙新平, 等. 大板实验中TATB 基炸药爆 轰波的传爆特性. 火炸药学报, 2007, 30(2): 26-29 51 彭其先, 马如超, 刘俊, 等. VISAR 测试技术研究炸药反应 区厚度. 流体力学实验与测量, 2003, 17(1): 43-45 52 Weng J D, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with Pico second resolution. Applied Physics Letters, 2006, 89(11101): 1-3 53 王德田, 李泽仁, 吴建荣, 等. 光纤位移干涉仪在爆轰加载飞 片速度测量中的应用. 爆炸与冲击, 2009, 29(1): 105-108 54 Gibson F C, Bowser M L, Summers C R. Use of an electrooptical method to determine detonation temperature in high explosives. Journal of Applied Physics, 1958, 29(4):628-632 55 He X C, Han C B, Kang S F. The measurement of detonation temperature of condensed explosives with Two Colour-Optical Fiber Pyrometer. In: Proceedings of 8th Symposium on Detonation. Albuquerque, New Mexico,1985. 567-574 56 Kato Y, Tanaka K, Sakurai T. Detonation temperature of nitromethane and some solid high explosives. In: Proceedings of 8th Symposium on Detonation. Albuquerque, New Mexico, 1985. 558-565 57 李佳, 庞其昌, 任克惠, 等. 瞬时多光谱爆温测量系统. 光子 学报, 2000, 29(10): 937-941 58 白永林, 任克惠. 炸药爆轰温度的瞬时多光谱测量. 光子学 报, 2003, 32(7): 868-871 59 郭学永, 李秀丽, 张黎明, 等. 非理想炸药爆炸产物温度的光 谱法测试. 南京理工大学学报, 2007, 31(5): 547-650 60 孙承纬, 卫玉章, 周之奎. 应用爆轰物理. 北京: 国防工业出 版社, 2000 61 Persson P A, Andersson B. A technique for detailed timeresolved radiation measurements in the reaction zone. In: Proceedings of 4th Symposium on Detonation. Silver Spring, Maryland, 1962. 602-608 62 Voskoboinikov I M, Gogulya M F. Radiation of the shock front in a liquid near the interface with a detonating charge. Khimicheskaya Fizika (Russian Journal of Chemical Physics), 1984, 3: 7 63 Lubyatinsky S N, Loboiko B G. Detonation reaction zones of solid explosives. In: Proceedings of 11th Symposium on Detonation. Snow Mall Village, Colorado, 1998. 836-844 64 赵同虎, 张新彦, 李斌. 用光电法研究钝感炸药JB-9014 反 应区结构. 高压物理学报, 2002, 16(2): 111-118 65 韩勇, 黄辉, 黄毅民, 等. 含铝炸药圆筒试验与数值模拟. 火 炸药学报, 2009, 32(4): 14-17 66 汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过 程研究. 爆炸与冲击, 2003, 23(6): 529-533 67 龙新平, 韩勇, 蒋治海, 等. 炸药爆轰驱动水初期过程的试验 及数值模拟. 爆炸与冲击, 2010, 30(1): 12-16 68 王福华. 纹影技术在侧向后喷流实验中的应用. 南京理工大 学学报, 2005, 29(3): 334-336 69 Thomas G O, Jones A. Some observations of the jet initiation of detonation. Combustion and Flame, 2000, 120(3):392-398 70 胡栋, 韩肇元, 张寿齐, 等. 炸药爆炸变形和首次破碎的研究. 高压物理学报, 2004, 3: 198-202 71 畅里华, 谭显祥, 汪伟, 等. 纹影技术用于爆轰与冲击波物理 实验研究. 激光与光电子学进展, 2006, 43(12): 58-61 72 Ferm E N, Morris C L, Quintana J P, et al. Proton radiography examination of unburned regions in PBX-9502 corner turning experiment. Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001, American Institute of Physics (AIP). 2001. 966-969 73 Smilowitz L, Henson1B F, Romero J, et al. Proton radiography of a thermal explosion in PBX9501. In: Elert M, Furnish M D, Chau R, et al. eds. Shock Compression of Condensed Matter-2007, American Institute of Physics (AIP). 2007. 968-972 74 郭学永, 惠君明, 谢立峰. 燃料爆炸抛撒过程的实验研究. 高 压物理学报, 2005, 19(2): 120-126 75 代晓淦, 向永. 两种塑料粘结炸药的Steven 试验及撞击感 度研究. 含能材料, 2006, 14(1): 38-41 76 马燮圻, 计忠瑛, 王正荣, 等. 高速实时全息干涉摄影在固体 火箭推进剂燃烧研究中的应用. 兵工学报, 1986, 4: 58-62 77 刘常龄, 袁永华. 高速微粒子场的全息诊断技术. 高速摄影 与光子学, 1989, 18(1): 42-45 78 龚敏, 王德胜, 黎剑华. 全息干涉法在条形药包离面位移场 研究中的应用. 爆炸与冲击, 2005, 25(3): 227-231 79 Zaitzev V M, Pokhil P F, Shvedov K K. Electromagnetic method for measurement of explosion product velocity. Doklady Akademii Nauk(DAN) SSSR, 1960, 132(6): 1339-1340 80 Sheffield S A, Gustavsen R L, Alcon R R. In-situ magnetic gauging technique used at LANL-method and shock information obtained. In: Furnish M D, Chhabildas L C, Hixson R S. eds. Shock Compression of Condensed Matter-1999. American Institute of Physics (AIP). 2000.1043-1048 81 张振宇, 王志兵, 卢芳云, 等. JO-9159 炸药的初始密度对 爆轰波反应区宽度影响的实验研究. 高压物理学报, 1999,13(4): 268-271 82 李志鹏, 龙新平, 黄毅民, 等. 用组合式电磁粒子速度计研究 JOB-9003 炸药的冲击起爆过程. 爆炸与冲击, 2006, 26(3):269-272 83 王圣平, 陈丕琪. U 形电磁速度计测量爆轰参数时影响结果 的两个因素. 爆炸与冲击, 1983, 1: 76 84 Erickson L M, Johnson C B, Parker N L, et al. The electromagnetic velocity gauge: use of multiple gauges, time response, and flow perturbations. In: Proceedings of 7th Symposium on Detonation. Naval Surface Warfare Center Report NSWC MP 82-334, 1982. 1062 85 Cau J F. Inappropriate use of inclined electromagnetic velocity gauges in explosive. In: Proceedings of 10th Symposium on Detonation. Office of Naval Research Report ONR 33395-12, 1993. 224 86 Jacobs S J, Edwards D J. Experimental study of the electromagnetic velocity gauge technique. In: Proceedings of5th Symposium on Detonation. Office of Naval Research Report No. ACR184, 1989. 413 87 Vorthman J E, Andrews G, Wackerle J. Reaction rates from electromagnetic gauge data. In: Proceedings of 8th Symposium on Detonation. Office of Naval Research, Report NSWC MP-86-194, 1986. 99 88 Sheffield S A, Gustavsen R L, Alcon R R. In-situ magnetic gauging technique used at LANL-method and shock information obtained. In: Furnish M D, Chhabildas L C, Hixson R S. eds. Shock Compression of Condensed Matter–1999. American Institute of Physics (AIP), 2000.1043-1048 89 Leiper G A, Kirby I J, Hackett A. Determination of reactionrates in intermolecular explosives using the electromagnetic particle velocity gauges. In: Proceedings of 8th Symposium on Detonation. Office of Naval Research, Report NSWC MP-86-194, 1986. 187 90 Gustavsen R L, Sheffield S A, Alcon R R, et al. Initiation of EDC-37 measured with embedded electromagnetic particle velocity gauges. In: Furnish M D, Chhabildas L C, Hixson R S. eds. Shock Compression of Condensed Matter–1999. American Institute of Physics (AIP). 2000.879-882 91 Lisell E. On Trycket Inflytande pa Elektriska Ledningsmotstander hos Metatter Samt En ny Metod Att Mata Hoga Tryck. Swedish, Uppsala Universitets Arsskrift,1903. 1 92 Urtiew P A, Cook TM, Maienschein J L, et al. Shock sensitivity of IHE at elevated temperature. Paper Summaries of the Tenth International Detonation Symposium. Boston, MA, 1993. 139 93 池家春. 锰铜压阻传感器在传爆序列研究中的应用. 火工品,1989, 1: 281-287 94 梁增友, 黄风雷, 段卓平, 等. PBX 炸药及其模拟材料冲击 损伤的试验研究. 弹箭与制导学报, 2008, 28(1): 131-134 95 路光明, 杜志明, 段卓平, 等. 用锰铜压阻法测量雷管内部爆 压. 火工品, 2000, 3: 6-8 96 严楠, 韩秀凤, 蔡瑞娇. 锰铜压阻法测量雷管输出的压力波 形分析. 含能材料, 2004, 12(5): 257-263 97 韩秀凤, 武玉红. 小尺寸非电火工元件锰铜压阻法测试技术 研究. 火工品, 2008, 5: 34-36 98 徐新春, 焦清介, 曹雄. 小尺寸装药爆轰在有机玻璃隔板中 的衰减规律. 含能材料, 2009, 17(4): 431-435 99 杜晓松, 杨邦朝, 王卉. 薄膜式锰铜传感器—— 一种新型的 超高压力传感器. 仪表技术与传感器, 2000, 1: 4-6 100 段卓平, 关智勇, 黄正平. 箔式高阻值低压锰铜压阻应力计 的设计及动态标定. 爆炸与冲击, 2002, 22(2): 169-172 101 Kawai H. The piezoelectricity of poly vinylidene fluoride. Journal of Applied Physics, 1969, 8(7): 975-976 102 Bauer F. Method and device for polarizing ferroelectric materials. US Patent, Patent Number: 4, 611, 260, Date of Patent: Sep.9, 1986 103 Lee L M, Johnson D E, Bauer F, et al. Piezoelectric polymer PVDF application under soft X-ray induced shock loading. In: Schmidt S C, Dick R D, Forbes J W. eds. Shock Compression of Condensed Matter-1991, Amsterdam: North-Holland publisher, 1991. 879-882 104 Reed R P, Graham R A, Moore L M, et al. The Sandia standard for PVDF shock sensors. In: Schmidt S C, Davison L W. eds. Shock Compression of Condensed Matter-1989. Elsevier Science Publishers, Amsterdam, 1990. 825-828 105 李焰, 王凯民, 谭红梅. PVDF 应力计在起爆试验研究中的 应用. 火工品, 2003, 3: 6-10 106 蔡军锋, 易建政, 檀朝彬. PVDF 压电传感器在爆炸冲击波 测量中的应用. 研究与开发, 2005, 3: 13-15 107 赵继波, 谭多望, 张远平, 等. PVDF 计在水中爆炸近场压力 测试中的应用. 火炸药学报, 2009, 32(3): 1-4 108 杜晓松, 杨邦朝, 周鸿仁. PVDF 冲击压力传感器的制备和 应用. 功能材料, 2002, 33(1): 15-18 109 李焰, 张向荣, 谭红梅. 国产PVDF 压电薄膜的冲击加载及 卸载响应研究. 高压物理学报, 20004, 18(3), 261-266 110 Anisichkin V F, Gliev S D, Ershov A P, et al. Reaction zone in detonations of dense explosives. In: Proceedings of 12th Symposium on Detonation. 2002. 237-246 111 Sergey D G, Anatoliy M T. Study of physical-chemical transformations in detonation wave by the electric conductivity method. In: Proceedings of 12th Symposium on Detonation. 2002. 6-17 112 Jameson R L, Lukasik S J, Pernick B J. Electrical resistivity measurements in detonating composition B and Pentolite. Journal of Applied Physics, 1964, 35(3): 714-720 113 Hayes B. On the electrical conductivity in detonation products. In: Proceedings of 4th Symposium on Detonation. Office of Naval Research, ACR-126: Washington,1967. 595-601 114 Hayes B. Electrical measurement in reaction zones of high explosives. In: Tenth Symposium (International) on Combustion, the Combustion Institute, 1965. 869-874 115 Tasker D G, Lee R J. The measurement of electrical conductivity in detonating condensed explosives. In: Proceedings of 9th Symposium on Detonation. 1989. 396-406 116 Tasker D G, Lee R J, Gustavson P K. Measurement of electrical conductivity in detonating condensed explosives. NSWCDD/TR-92/218, NITS No: AD-A264 482/1/HDM 117 Gilev S D. The development of a method of measuring a condensed matter electro-conductivity for investigation of dielectric-metal transitions in a shock wave. Journal of Physics. IV(FRANCE), 1997, 7: C3-211-216 118 周霖, 廖英强, 徐更光. 爆轰产物导电性的实验测量. 含能材 料. 2005, 13(3): 148-150 119 蒋治海, 龙新平, 何碧, 等. TNT 和RHT-906 炸药起爆过程 的电导率研究. 含能材料, 2007, 15(2): 169-171 120 唐恩凌, 廖英强. 凝聚炸药爆轰产物的电导率测量. 弹箭与 制导学报, 2008, 28(6): 126-128 121 金兆鑫, 焦清介, 陈曦. 含TNT 注装混合炸药爆轰产物电导 率实验研究. 含能材料, 2008, 16(4): 420-423 122 焦清介, 金兆鑫, 徐新春. 铸装TNT/RDX 爆轰过程导电性 及反应区厚度实验. 含能材料, 2009, 17(2): 178-182 123 胡栋, 孙珠妹. 利用单色谱仪研究炸药粉快速反应产物发射 谱. 光学学报, 1996, 16(4): 426-429 124 许海波, 孔令海, 彭现科. 高能质子照相的研究进展. 物理,2008, 37(11): 783-787 125 王晓丽, 焦清介. 微/纳米含能薄膜材料的制备与应用研究. 含能材料, 2006, 14(2): 139-141
点击查看大图
计量
- 文章访问数:1725
- HTML全文浏览量:109
- PDF下载量:2161
- 被引次数:0