留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大推力液体火箭发动机结构中的力学问题

李斌 闫松 杨宝锋

李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题. 力学进展, 2021, 51(4): 831-864 doi: 10.6052/1000-0992-21-003
引用本文: 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题. 力学进展, 2021, 51(4): 831-864 doi: 10.6052/1000-0992-21-003
Li B, Yan S, Yang B F. Mechanical problems of the large thrust liquid rocket engine. Advances in Mechanics, 2021, 51(4): 831-864 doi: 10.6052/1000-0992-21-003
Citation: Li B, Yan S, Yang B F. Mechanical problems of the large thrust liquid rocket engine. Advances in Mechanics, 2021, 51(4): 831-864 doi: 10.6052/1000-0992-21-003

大推力液体火箭发动机结构中的力学问题

doi: 10.6052/1000-0992-21-003
详细信息
    作者简介:

    李斌, 1969年生, 研究员, 博士生导师, 航天推进技术研究院副院长, 国家“万人计划”科技创新领军人才, 国防“973”项目技术首席, 总装备部航天运载技术专业组副组长. 长期从事液体火箭发动机和新型组合动力技术研究. 作为我国新一代运载火箭发动机项目负责人, 带领团队突破了高压补燃循环液氧煤油发动机为代表的多项重大关键技术. 获得国家科技进步一等奖1项, 国防科技进步奖项11项, 发表学术论文43篇, 出版著作1部, 授权发明专利、国防专利18项, 受理国际专利1项

    通讯作者:

    CASClibin@sohu.com

  • 中图分类号: V434

Mechanical problems of the large thrust liquid rocket engine

More Information
  • 摘要: 依据大推力液体火箭发动机工作时极端的力热环境状态, 阐述分析了大推力发动机强振动、大静载、多源激励和传递路径复杂的力学特点. 静力学方面介绍了整机结构载荷分析和组件静力学分析方法, 动力学方面介绍了整机低频模型、精细化动力学修正、多源载荷等效等问题的研究情况. 针对发动机典型的部件, 梳理了大推力发动机研制中面临的力学挑战, 包括高温高压燃气摇摆装置、转子动力学、动静干涉流体激振、诱导轮汽蚀振荡、大范围轴向力平衡、超音速涡轮颤振、推力室热疲劳、喷管侧向力载荷、总装管路疲劳断裂等问题, 指出了力学需求和未来研究方向. 最后对发动机结构概率失效分析的现状进行了简要介绍, 为大推力液体火箭发动机研制提供力学支撑.

     

  • 图  1  大推力发动机地面热试车中结构失效照片

    图  2  大推力泵后摆发动机典型结构及力学特点

    图  3  发动机工作时燃烧室振动加速度响应瀑布图

    图  4  大推力发动机整机结构载荷模型

    图  5  燃料入口管固定支板变形(mm)

    图  6  LE-X发动机中压力、流场温度和结构温度分布(Tani et al. 2012)

    图  7  部件静强度分析基本流程

    图  8  涡轮静子温度云图及压力、热载荷下变形云图. (a)温度云图, (b)变形云图

    图  9  某大推力泵前摆发动机低频模型及模态试验验证

    图  10  SSME结构动力学模型发展过程(Baker & Pray 2011, Foley et al. 1983, Muller 1980)

    图  11  基于三维扫描测振的推力室模态试验及理论和实测振型对比. (a)非接触模态试验, (b)理论振型, (c)实测振型

    图  12  部件到整机的模型验证流程

    图  13  液体火箭发动机多源载荷识别试验(Yan et al. 2016)

    图  14  载荷识别结果和真实载荷对比. (a)燃气发生器, (b)燃烧室, (c)涡轮泵(Yan et al. 2016)

    图  15  某泵后摆发动机燃气摇摆装置

    图  16  组合摆10°时燃气摇摆装置传力组件Mises应力云图(MPa)

    图  17  波纹管与铠装环应力分布(MPa)

    图  18  氧泵壳体Mises应力云图(MPa)

    图  19  某涡轮泵轴系失效

    图  20  叶片式扩压器和新型扩压器结构对比. (a)叶片式扩压器, (b)新型扩压器

    图  21  燃料泵诱导轮叶片上的汽蚀侵蚀

    图  22  等螺距诱导轮和新型诱导轮结构对比. (a)等螺距诱导轮, (b)新型诱导轮

    图  23  氧泵径向位移色谱图对比. (a)等螺距诱导轮, (b)新型诱导轮

    图  24  诱导轮汽蚀发展过程(Xiang et al. 2021)

    图  25  平衡活塞示意图(黄智勇等 2004)

    图  26  超音速涡轮内复杂流动压力和马赫数云图

    图  27  涡轮盘1节圆和2节径振型图

    图  28  推力室夹层壁失效模式(Schwarz et al. 2011)

    图  29  大推力发动机起动过程自由激波分离和受限激波分离转换过程

    图  30  煤油预压泵平衡路导管改进前、后结构

    图  31  发动机柔性软管断裂及失稳形貌

    图  32  结构强度分析中的不确定性(Blair et al. 2011)

    Baidu
  • [1] 陈晖, 李斌, 张恩昭, 谭永华. 2009. 液体火箭发动机高转速诱导轮旋转空化. 推进技术, 30: 390-395 (Chen H, Li B, Zhang E Z, Tan Y H. 2009. Rotating cavitation of the high-speed rotational inducer of LPRE. Journal of Propulsion Technology, 30: 390-395). doi: 10.3321/j.issn:1001-4055.2009.04.002
    [2] 陈建华, 张贵田, 夏开红, 吴海波. 2008. 液氧煤油发动机高压推力室冷却技术. 宇航学报, 29: 242-245 (Chen J H, Zhang G T, Xia K H, Wu H B. 2008. Cooling techniques for high pressure chamber of LOX/Kerosene engine. Journal of Astronautics, 29: 242-245). doi: 10.3873/j.issn.1000-1328.2008.01.043
    [3] 程诚, 王一白, 林庆国. 2019. 发动机起动/关机过程中喷管侧向载荷试验. 航空动力学报, 34: 460-468 (Cheng C, Wang Y B, Lin Q G. 2019. Test of nozzle side load variation during engine start up and shut down. Journal of Aerospace Power, 34: 460-468).
    [4] 杜大华, 贺尔铭, 李磊. 2018a. 改进模拟退火算法的喷管动力学模型修正. 宇航学报, 39: 632-638 (Du D H, He E M, Li L. 2018a. A dynamics model updating method of nozzle based on improved simulation annealing algorithm. Journal of Astronautics, 39: 632-638).
    [5] 杜大华, 穆朋刚, 田川, 周建, 程晓辉. 2018b. 液体火箭发动机管路断裂失效分析及动力优化. 火箭推进, 44: 16-22 (Du D H, Mu P G, Tian C, Zhou J, Cheng X H. 2018b. Failure analysis and dynamics optimization of pipeline for liquid rocket engine. Journal of Rocket Propulsion, 44: 16-22).
    [6] 胡海峰, 高新妮, 凌前程, 章荣军. 2014. 火箭发动机喷管分离流动仿真分析. 火箭推进, 40: 24-30 (Hu H F, Gao X N, Ling Q C, Zhang R J. 2014. Simulation analysis on separation flow in rocket engine nozzle. Journal of Rocket Propulsion, 40: 24-30).
    [7] 黄道琼, 王振,杜大华. 2019. 大推力液体火箭发动机中的动力学问题. 中国科学: 物理学 力学 天文学, 49: 024503-1-024503-12

    Huang D Q, Wang Z, Du D H. 2019. Structural dynamics of the large thrust liquid rocket engines, SCIENTIA SINICA Physica, Mechanica & Astronomica, 49: 024503-1-024503-12
    [8] 黄智勇, 逯婉若, 李惠敏. 2004. 补燃发动机涡轮泵轴向力平衡系统研究. 火箭推进, 30: 1-5 (Huang Z Y, Lu W R, Li H M. 2004. Axial force equilibrium study of staged combustion rocket engine turbopump. Journal of Rocket Propulsion, 30: 1-5). doi: 10.3969/j.issn.1672-9374.2004.01.001
    [9] 贾睿东, 冯喜平, 陈慧, 任泽宇, 张家忠. 2020. 超声速喷管中激波分离诱发流场对称破缺的机理及其控制. 航空动力学报, 35: 215-224 (Jia R D, Feng X P, Chen H, Ren Z Y, Zhang J Z. 2020. Mechanism of symmetry breaking of flow field induced by shock separation in supersonic nozzle and its control. Journal of Aerospace Power, 35: 215-224).
    [10] 姜金朋, 刘志超, 刘筑, 巩帆, 王珏. 2020. 火箭发动机涡轮叶片疲劳寿命可靠性分析. 火箭推进, 46: 57-63 (Jiang J P, Liu Z C, Liu Z, Gong F, Wang J. 2020. Reliability analysis of fatigue life for rocket engine turbine blade. Journal of Rocket Propulsion, 46: 57-63). doi: 10.3969/j.issn.1672-9374.2020.02.009
    [11] 李斌. 2014. 构建基础研究平台, 推动液体动力技术创新发展. 火箭推进, 40: 1-9 (Li B. 2014. Establishment of fundamental research platform for promoting innovative development of liquid propulsion technology. Journal of Rocket Propulsion, 40: 1-9). doi: 10.3969/j.issn.1672-9374.2014.01.001
    [12] 李斌, 丁丰年, 张小平. 2011. 载人登月推进系统. 北京: 中国宇航出版社

    Li B, Ding F N, Zhang X P. 2011. Manned Lunar Landing Propulsion System. Beijing: China Aerospace Press
    [13] 李家文. 2011. 大型捆绑火箭姿态控制系统的建模、设计与分析.[博士论文]. 长沙: 国防科学技术大学

    Li J W. 2011. Modeling, design and analysis of large strap-on launch vehicle’s attitude control system. [PhD Thesis]. Changsha: National University of Defense Technology
    [14] 李欣, 肖立明, 刘畅, 东华鹏, 李家文, 王珏. 2017. 变螺距诱导轮的气蚀性能研究. 火箭推进, 43: 1-8 (Li X, Xiao L M, Liu C, Dong H P, Li J W, Wang J. 2017. Study on cavitation performance of variable-pitch inducer. Journal of Rocket Propulsion, 43: 1-8). doi: 10.3969/j.issn.1672-9374.2017.01.001
    [15] 林震, 王长辉, 刘宇, 许晓勇. 2010. 喷管分离流动及其侧向载荷. 北京航空航天大学学报, 36: 307-310 (Li Z, Wang C H, Liu Y, Xu X Y. 2010. Flow separation and side-load in nozzle. Journal of Beijing University of Aeronautics and Astronautics, 36: 307-310).
    [16] 刘亚冰, 王长辉, 许晓勇. 2008. 喷管分离流动与侧向载荷定常数值模拟. 航空动力学报, 23: 2114-2118 (Liu Y B, Wang C H, Xu X Y. 2008. Stationary numerical simulation of flow separation and side load in nozzle. Journal of Aerospace Power, 23: 2114-2118).
    [17] 谭永华. 2013. 大推力液体火箭发动机研究. 宇航学报, 34: 1303-1308 (Tan Y H. 2013. Research on large thrust liquid rocket engine. Journal of Astronautics, 34: 1303-1308). doi: 10.3873/j.issn.1000-1328.2013.10.002
    [18] 王艺杰. 2010. 固体火箭发动机喷管分离流动数值模拟及试验研究[硕士论文]. 西安: 西北工业大学

    Wang Y J. Numerical simulation and experiment of flow separation in SRM nozzles. [Master Thesis]. Xi’an: Northwestern Polytechnical University
    [19] 夏德新. 2001. 高压多级氢涡轮泵转子动力学设计与试验研究. 导弹与航天运载技术, 6: 21-26 (Xia D X. 2001. Design and Experimental study on rotor dynamics of high pressure multistage LH2 turbopump. Missiles and Space Vehicles, 6: 21-26). doi: 10.3969/j.issn.1004-7182.2001.06.005
    [20] 项乐, 陈晖, 谭永华, 刘诗鑫, 许开富, 张亚太. 2020. 液体火箭发动机诱导轮空化热力学效应研究. 推进技术, 41: 812-819 (Xiang L, Chen H, Tan Y H, Liu S X, Xu K F, Zhang Y T. 2020. Study of cavitation thermodynamic effect of liquid rocket engine inducer. Journal of Propulsion Technology, 41: 812-819).
    [21] 项乐, 陈晖, 谭永华, 许开富, 刘军年. 2019. 诱导轮空化流动特性实验研究. 农业机械学报, 50: 125-132 (Xiang L, Chen H, Tan Y H, Xu K F, Liu J N. 2019. Experiment of cavitating flow characteristics of inducer. Transactions of the Chinese Society for Agricultural Machinery, 50: 125-132). doi: 10.6041/j.issn.1000-1298.2019.12.014
    [22] 徐云飞, 李锋, 邓长华, 黄道琼. 2017. 液体火箭发动机充液导管流固耦合动力学特性. 航空动力学报, 32: 1523-1529 (Xu Y F, Li F, Deng C H, Huang D Q. 2017. Dynamic characteristics of fluid-filled pipe in liquid rocket engines considering fluid-structure interaction. Journal of Aerospace Power, 32: 1523-1529).
    [23] 闫松, 李斌, 李斌潮, 李锋. 2017. 三维扫描测振技术在液体火箭发动机模态试验中的应用. 宇航学报, 38: 97-103 (Yan S, Li B, Li B C, Li F. 2017. Application of 3-D scanning vibrometry technique in liquid rocket engine modal test. Journal of Astronautics, 38: 97-103). doi: 10.3873/j.issn.1000-1328.2017.01.013
    [24] 闫松, 李斌, 李锋. 2018. 结构动力学模型修正技术在液体火箭发动机中的应用. 火箭推进, 44: 27-35 (Yan S, Li B, Li F. 2018. Application of structural dynamic model updating technique in liquid rocket engine. Journal of Rocket Propulsion, 44: 27-35). doi: 10.3969/j.issn.1672-9374.2018.01.005
    [25] 闫松, 谭永华, 陈建华. 2014. 波纹管流体诱导振动研究进展. 火箭推进, 40: 16-21 (Yan S, Tan Y H, Chen J H. 2014. Research progress of flow-induced vibration of bellows. Journal of Rocket Propulsion, 40: 16-21). doi: 10.3969/j.issn.1672-9374.2014.02.003
    [26] 杨宝锋, 李斌, 陈晖, 刘占一. 2019. 新Omega涡识别法在火箭发动机涡轮氧泵中的应用. 推进技术, 40: 2105-2112 (Yang B F, Li B, Chen H, Liu Z Y. 2019. Application of new omega vertex identification method in a liquid rocket engine oxygen pump. Journal of Propulsion Technology, 40: 2105-2112).
    [27] 张亮, 吴海波, 张德禹, 黄道琼, 李录贤. 2014. 液体火箭发动机推力室喉部结构热疲劳寿命预估研究. 火箭推进, 40: 24-28 (Zhang L, Wu H B, Zhang D Y, Huang D Q, Li L X. 2014. Study on predicting thermal fatigue life for throat structure of LRE thrust chamber. Journal of Rocket Propulsion, 40: 24-28).
    [28] 张亚太, 陈晖, 项乐, 陈炜, 许开富. 2020. 基于正交优化设计的诱导轮空化性能研究. 推进技术, 41: 343-352 (Zhang Y T, Chen H, Xiang L, Chen W, Xu K F. 2020. Study on cavitation performance of inducer based on orthogonal experiment. Journal of Propulsion Technology, 41: 343-352).
    [29] 赵经明. 2018. 涡轮泵表面织构间隙密封-转子系统动力学特性研究.[硕士论文]. 哈尔滨: 哈尔滨工业大学

    Zhao J M. 2018. Research on the dynamic characteristics of the textured clearance seal-rotor system for turbo pump. [Master Thesis]. Harbin: Harbin Institute of Technology
    [30] 郑继坤, 吴建军. 2005. 氢氧火箭发动机高速氧涡轮泵转子动力学特性研究. 导弹与航天运载技术, 278: 5-9 (Zheng J K, Wu J J. 2005. Research on rotor dynamics of LOX turbopump of LH2/LOX engine. Missles and Space Vehicles, 278: 5-9). doi: 10.3969/j.issn.1004-7182.2005.05.002
    [31] Aggarwal P. 2006. Structural requirements for the space propulsion engine systems//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
    [32] Ahlberg J H, Hamilton S, Migdal D, Nilson E N. 1961. Truncated perfect nozzles in optimum nozzle design. ARS Journal, 31: 614-620. doi: 10.2514/8.5577
    [33] Amakawa H, Negishi H, Nishimoto M, Hori S. 2017. Numerical investigation of longer life combustion chambers of liquid rocket engines based on coupled thermal-fluid-structure simulation//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas.
    [34] Asraff A K, Sunil S, Muthukumar R, Ramanathan T J. 2010. Stress analysis & life prediction of a cryogenic rocket engine thrust chamber considering low cycle fatigue, creep and thermal ratchetting. Transactions of the Indian Institute of Metals, 63: 601-606. doi: 10.1007/s12666-010-0089-7
    [35] Baars W J, Tinney C E. 2010. On the Unsteadiness associated with shock-induced separation in overexpanded rocket nozzles//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN.
    [36] Baker M, Pray C. 2011. Understanding critical dynamic loads for nozzle and nozzle extension design//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California.
    [37] Belelloch P. 2009. Matching random response//Presented at Spacecraft and Launch Vehicle Dynamic Environments Workshop, EI Segundo, CA.
    [38] Blair J C, Ryan R S, Schutzenhofer L A. 2011. Lessons learned in engineering. National Aeronautics and Space Administration, Marshall Space Flight Center.
    [39] Brown A M, DeHaye M, DeLessio S. 2011. Application of probabilistic methods to assess risk due to resonance in the design of J-2X rocket engine turbine blades//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado.
    [40] Brown A M, DeHaye M, DeLessio S. 2013. Probabilistic methods to determine resonance risk and damping for rocket turbine blades. Journal of Propulsion and Power, 29: 1367-1373. doi: 10.2514/1.B34834
    [41] Brown A M, Schmauch P. 2012. Characterization of deficiencies in the frequency domain forced response analysis technique for turbine bladed disks//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii.
    [42] Brunner J J. 1966. Analysis and experimental verification of axial thrust on the M-1 liquid oxygen. NASA CR54817.
    [43] Chamis C C, Hopkins D A. 1988. Probabilistic structural analysis methods development for SSME. N90-28616. https://ntrs.nasa.gov/api/citations/19900019300/downloads/19900019300.pdf
    [44] Cheng C, Wang Y, Liu Y, Liu D, Lu X. 2013. Thermal-structural response and low-cycle fatigue damage of channel wall nozzle. Chinese Journal of Aeronautics, 26: 1449-1458. doi: 10.1016/j.cja.2013.07.045
    [45] Childs D. 1993. Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. New York: John Wiley & Sons.
    [46] Christensen E R, Brown A M, Frady G P. 2007. Calculation of dynamic loads due to random vibration environments in rocket engine systems//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii.
    [47] Christensen E R, Frady G, Mims K. 1998. Structural dynamic analysis of the X-34 rocket engine//39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. AIAA-98-2012. Long Beach, CA
    [48] Eckard T D. 1978. Liquid rocket lines, bellows. flexible hoses, and filters. NASA space vehicle design criteria, NASA SP-8123.
    [49] Ellis D L, Loewenthal W S, Yun H M. 2012. Tensile Properties of GRCop-84, National Aeronautics and Space Administration, Glenn Research Center.
    [50] Ferria H. 2011. Contribution to numerical and experimental studies of flutter in space turbines. aerodynamic analysis of subsonic or supersonic flows in response to a prescribed vibratory mode of the structure. [PhD Thesis]. Royal Institute of Technology, Stockholm, Sweden.
    [51] Foley M J, Tilley D M, Welch C T.1983. SSME structural dynamic model development-final report. NASA-CR-170960.
    [52] Frady G, Jennings J M, Mims K, Brunty J. 2002. Engine system loads analysis compared to hot-fire data//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Colorado.
    [53] Frey M, Hagemann G. 2000. Restricted shock separation in rocket nozzles. Journal of Propulsion and Power, 16: 478-484. doi: 10.2514/2.5593
    [54] Frey M, Hagemann G. 1998. Status of flow separation prediction in rocket nozzles//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH
    [55] Frey M, Hagemann G. 1999. Flow separation and side-loads in rocket nozzles//35th Joint Propulsion Conference and Exhibit, Los Angeles, CA
    [56] Frey M, Stark R, Ciezki H K, Quessard F. 2000. Subscale nozzle testing at the P6.2 test stand//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama.
    [57] Fulton D. 1973a. Investigation of thermal fatigue in non-tubular regenerative cooled thrust chambers, Volume 1. Rockwell International Corp., Canoga Park, CA.(AD-760582; AFRPL-TR-73-10-Vol-1)
    [58] Fulton D. 1973b. Investigation of thermal fatigue in non-tubular regeneratively cooled thrust chambers. Volume 2. Rockwell International Corp., Canoga Park, CA.(AD-760583; AFRPL-TR-73-10-Vol-2)
    [59] Gerlach C R. 1969. Flow-induced vibrations of metal bellows. Journal of Engineering for Industry, 91: 1196-1202. doi: 10.1115/1.3591771
    [60] Greuel D, Suslov D, Haidn O J, Fritscher K. 2002. Thermal barrier coatings for cryogenic rocket Engines//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana.
    [61] Groth P, Mårtensson H, Edin N. 2010. Experimental and computational fluid dynamics based determination of flutter limits in supersonic space turbines. Journal of Turbomachinery, 132: 011010-1-011010-8.
    [62] Hagemann G, Alting J, Preclik D. 2003. Scalability for rocket nozzle flows based on subscale and full-scale testing. Journal of Propulsion and Power, 19: 321-331. doi: 10.2514/2.6123
    [63] Hannum N P, Kasper H J, Pavli A J. 1976. Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers//12th Propulsion Conference, Palo Alto, California
    [64] Hannum N P, Price H G. 1981. Some effects of thermal-cycle-induced deformation in rocket thrust chamber. NASA -TP-1834.
    [65] Hashimoto T, Yoshida M, Watanabe M. 1997. Experimental study on rotating cavitation of rocket propellant pump inducers. Journal of Propulsion and Power, 13: 488-494. doi: 10.2514/2.5210
    [66] He M S, Qin L Z, Liu Y. 2015. Numerical investigation of flow separation behavior in an over-expanded annular conical aerospike nozzle. Chinese Journal of Aeronautics, 28: 983-1002. doi: 10.1016/j.cja.2015.06.016
    [67] Herda D A, Gross R S.1996. High pressure oxidizer turbopump (HPOTP) inducer dynamic design environment. NASA-TP-3589
    [68] Ho H W, Newell J F. 1994. Composite load spectra for select space propulsion structural components. NASA-CR-194476.
    [69] Huang D H, Huzel D K. 1992. Modern engineering for design of liquid-propellant rocket engine. American Institute of Aeronautics and Astronautics, Washington, D.C.
    [70] Ingram C M, West J, Pech G J, Hansen J P. 2006. U.S. Engineering and operational capability for Atlas V RD-180//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California.
    [71] Inoue C, Watanabe T, Himeno T. 2007. Numerical study on flow induced vibration of LOX post in liquid rocket engine preburner. International Journal of Gas Turbine, Propulsion and Power Systems, 1: 22-29. doi: 10.38036/jgpp.1.1_22
    [72] Jakobsen J K, Keller R B J. 1971. Liquid rocket engine turbopump inducers, NASA Space Vehicle Design Criteria, NASA SP-8052.
    [73] Kato C, Kaiho M, Manabe A. 2003. An overset finite-element large-eddy simulation method with applications to turbomachinery and aeroacoustics. Journal of Applied Mechanics, 70: 32-43. doi: 10.1115/1.1530637
    [74] Kimura T, Hashimoto T, Sato M, Takada S. 2015. Development of a reusable LOX/LH2 rocket engine - firing tests and lifetime evaluation analysis//51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL.
    [75] Kristiansen U R, Wiik G A. 2007. Experiments on sound generation in corrugated pipes with flow. The Journal of the Acoustical Society of America, 121: 1337-1344. doi: 10.1121/1.2434241
    [76] Kuhl D, Riccius J, Haidn O J. 2002. Thermomechanical analysis and optimization of cryogenic liquid rocket engines. Journal of Propulsion and Power, 18: 835-846. doi: 10.2514/2.6007
    [77] Kumada N, Ogawara A, Manako H, Onga T. 2010. Highly reliable design approaches for next booster engine LE-X//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN.
    [78] Kurosu A, Yamanishi N, Sunakawa H, Nishimoto M, Okita K. 2008. LE-X -Japanese next liquid booster engine//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT.
    [79] Kurosu A, Yamanishi N, Tani N, Okita K. 2006. Study of next booster engine LE-X in JAXA//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California.
    [80] Laumert B. 2002. Numerical investigation of aerodynamic blade excitation mechanisms in transonic turbine stages, [PhD Thesis]. Stockholm: KTH Royal Institute of Technology.
    [81] Marcu B, Hadid A, Lin P, Balcazar D. 2005. Towards rocket engine components with increased strength and robust operating characteristics//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona.
    [82] Marcu B, Tran K, Dorney D. 2008. Turbine design and analysis for the J-2X Engine turbopumps//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT.
    [83] Mårtensson H E. 2006. Flutter free design of aerodynamically unstable supersonic turbines//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California
    [84] Miller R W. 1974. Cyclic fatigue analysis of rocket thrust chambers: Volume 1: OFHC copper chamber low cycle fatigue. NASA CR-134641.
    [85] Muller G R.1980. Finite element models of the space shuttle main engine. NASA-TM-78260.
    [86] Newell J F, Ho H, Kurth R E. 1990. The composite load spectra project//NASA 5th Conference on Artificial Intelligence for Space Applications, Huntsville, Alabama.
    [87] Newlin L, Sutharshana S, Ebbeler D, Moore N. 1990. Probabilistic low cycle fatigue failure analysis with application to liquid propellant rocket engines//31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA.
    [88] Nguyen A T, Deniau H, Girard S, Alziary T. 2002. Wall pressure fluctuations in an over-expanded rocket nozzle//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana.
    [89] Nishimoto M, Yoshimura S, Yamada T. 2007. Elastodynamic analysis of fluid-induced vibration in the LE-7A liquid hydrogen pump//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati.
    [90] Popp M S, Schmidt G. 1996. Rocket engine combustion chamber design concepts for enhanced life//32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL
    [91] Rao G V R. 1958. Exhaust nozzle contours for optimum thrust. Journal of Jet Propulsion, 28: 377-382. doi: 10.2514/8.7324
    [92] Reynolds T W. 1966. The mechanical design of a two-stage impulse turbine for the liquid hydrogen turbopump of the M-1 engine. NASA CR 54821.
    [93] Romano E. 1989. The structural dynamics analysis of the main injector LOX inlet tee and its redesign. NASA CR-186764
    [94] Ruf J H, McDaniels D M, Brown A M. 2009. Nozzle side load testing and analysis at Marshall Space Flight Center//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado
    [95] Ryan R S. 1996. A history of aerospace problems, their solutions, their lessons. NASA Technical Paper 3653.
    [96] Ryan R S, Salter L D, Young G M. 1985. SSME lifetime prediction and verification, integrating environments, structures, materials; the challenge. N85-16918.
    [97] Ryan R S, Townsend J S. 1993. Application of probabilistic analysis/design methods in space programs - The approaches, the status, and the needs//34th Structures, Structural Dynamics and Materials Conference, La Jolla, CA.
    [98] Schwarz W, Schwub S, Quering K, Wiedmann D, Höppel H W, Göken M. 2011. Life prediction of thermally highly loaded components: modelling the damage process of a rocket combustion chamber hot wall. CEAS Space Journal, 1: 83-97. doi: 10.1007/s12567-011-0007-9
    [99] Song J, Sun B. 2017. Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines. Chinese Journal of Aeronautics, 30: 1043-1053. doi: 10.1016/j.cja.2017.04.007
    [100] Sunakawa H, Nishimoto M, Yamanishi N, Noda K, Sato E, Shiwa M. 2011. Reliability and life time evaluation approach of the LE-X engine//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California.
    [101] Tani N, Ogura K, Yamanishi N, Negishi H. 2013. An end-to-end high fidelity numerical simulation of the LE-X engine - influence of coolant leakage on engine power balance//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA.
    [102] Tani N, Yamanishi N, Kurosu A. 2012. An end-to-end high fidelity numerical simulation of the LE-X engine - combustion chamber risk evaluation//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia.
    [103] Tani N, Yamanishi N, Kurosu A, Negishi H. 2011. An end-to-end high fidelity numerical simulation of the LE-X engine - engine performance evaluation and risk mitigation study//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Diego, California.
    [104] Tomita T, Sakamoto H, Takahashi M, Sasaki M. 2002. Sub-scale nozzle combustion tests of the LE-7A engine for clarification of large side-loads//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana.
    [105] Tsujimoto Y, Kamijo K, Yoshida Y. 1993. A theoretical analysis of rotating cavitation in inducers. Journal of Fluids Engineering, 115: 135-141. doi: 10.1115/1.2910095
    [106] Van Hooser K, Bailey J, Majumdar A. 1999. Numerical prediction of transient axial thrust and internal flows in a rocket engine turbopump//35th Joint Propulsion Conference and Exhibit, Los Angeles, California.
    [107] Vermes A G. 2017. Modeling rotating cavitation instabilities in rocket engine turbopumps. [Master Thesis]. Netherlands: Delft University of Technology.
    [108] Watanabe S, Tsujimoto Y, Furukawa A. 2001. Theoretical analysis of transitional and partial cavity instabilities. Journal of Fluids Engineering, 123: 692-697. doi: 10.1115/1.1378295
    [109] Watanabe Y, Sakazume N, Tsuboi M. 2002. LE-7A engine nozzle problems during the transient operations//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana.
    [110] Xiang L, Chen H, Tang Y H, Xu K F, Liu J N. 2019. Study of thermodynamic cavitation effects in an inducer. Journal of Propulsion and Power, 36: 312-322.
    [111] Xiang L, Tang Y H, Chen H, Xu K F. 2021. Experimental investigation of cavitation instabilities in inducer with different tip clearances. Chinese Journal of Aeronautics. In press. https://doi.org/10.1016/j.cja.2021.01.009
    [112] Yamanishi N, Nishimoto M, Hori S. 2008. Numerical analysis of flow-induced structural vibration in the LE-7A liquid hydrogen pump//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford.
    [113] Yan S, Li B, Li B C, Li F. 2016. Dynamic load identification of a second stage liquid rocket engine based on Tikhonov regularization method//67th International Astronautical Congress, Guadalajara, Mexico.
    [114] Yan S, Li B, Li F, Li B C. 2017. Finite element model updating of liquid rocket engine nozzle based on modal test results obtained from 3-D SLDV technique. Aerospace Science and Technology, 69: 412-418. doi: 10.1016/j.ast.2017.07.002
    [115] Yang B F, Li B, Chen H, Liu Z Y, Xu K F. 2019. Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump. Journal of Fluids Engineering, 141: 071109-1-071109-9.
    [116] Yoo J, Jeon S M. 2020. Static and dynamic structural analyses for a 750 kN class liquid rocket engine with TVC actuation. CEAS Space Journal, 12: 331-341. doi: 10.1007/s12567-020-00305-9
    [117] Zoladz T. 2001. Overview of rotating cavitation and cavitation surge in the Fastrac engine LOX turbopump. NASA Marshall Space, Huntsville, Alabama, Report No. 20020016716.
  • 加载中
图(32)
计量
  • 文章访问数:  3109
  • HTML全文浏览量:  1349
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 录用日期:  2021-04-28
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-11-26

目录

    /

    返回文章
    返回

    Baidu
    map