留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属增材制造过程中材料微观组织演化的模拟研究

陈泽坤,李晓雁

downloadPDF
陈泽坤, 李晓雁. 金属增材制造过程中材料微观组织演化的模拟研究. 力学进展, 2022, 52(2): 397-409 doi: 10.6052/1000-0992-22-021
引用本文: 陈泽坤, 李晓雁. 金属增材制造过程中材料微观组织演化的模拟研究. 力学进展, 2022, 52(2): 397-409doi:10.6052/1000-0992-22-021
Chen Z K, Li X Y. Numerical simulations for microstructure evolution during metal additive manufacturing. Advances in Mechanics, 2022, 52(2): 397-409 doi: 10.6052/1000-0992-22-021
Citation: Chen Z K, Li X Y. Numerical simulations for microstructure evolution during metal additive manufacturing.AdvancesinMechanics, 2022, 52(2): 397-409doi:10.6052/1000-0992-22-021

金属增材制造过程中材料微观组织演化的模拟研究

doi:10.6052/1000-0992-22-021
基金项目:北京市自然科学基金 (Z180014) 资助项目
详细信息
    作者简介:

    李晓雁, 清华大学长聘教授、博导, 国家海外高层次青年人才、优秀青年基金获得者. 近年来, 一直致力于新型微纳米结构材料的构筑设计、先进制备和力学研究. 目前以第一或通讯作者在《Nature》《Nature Rev Mater》《Nature Nanotech》《Nature Mater》《Nature Commu》《JMPS》《PRL》《Nano Lett》《PNAS》《Science Adv》等期刊上发表SCI论文70余篇

    通讯作者:

    xiaoyanlithu@tsinghua.edu.cn

  • 中图分类号:O341

Numerical simulations for microstructure evolution during metal additive manufacturing

More Information
  • 摘要:金属增材制造是集设计、制造一体化的一种新型金属构件制造技术, 在航天航空、交通运输、生物医疗等领域具有广阔的应用前景. 金属增材制造材料的力学性能与其材料微观组织密切相关. 因此, 发展金属增材制造过程中材料微观组织的模拟方法, 有助于指导和优化金属增材制造的工艺参数和流程, 从而制备出性能优异的金属材料. 本文发展了基于连续体假设的热传导模型与元胞自动机相结合的模拟方法, 并利用生死单元方法, 考虑晶粒的重熔和再生长过程, 解决了金属增材制造中多层粉末制造的数值模拟问题. 本文采用该方法模拟了镍基合金IN718、不锈钢316L和高熵合金FeCoCrNiMn的增材制造过程, 并获得了这些增材制造合金的典型材料微观组织, 其模拟结果与实验结果相吻合. 同时, 将该方法拓展到三维尺度的模拟, 研究了镍基合金IN718增材制造过程中三维晶粒的形核和生长. 最后, 对金属增材制造过程中材料微观组织演化的模拟研究中的主要问题进行了总结和展望.

  • 图 1金属增材制造工艺优化流程

    图 2二维元胞自动机示意图. (a)晶粒轮廓示意图, (b)二维元胞自动机网络.每一个网格为一个元胞,白色网格表示液态元胞,浅蓝色网格表示界面元胞,黄色网格表示固态元胞,灰色网格表示邻居元胞,黑色圆点表示潜在形核位点,蓝色虚线边框表示晶粒轮廓的包络边界,紫色区域代表凝固晶粒

    图 3模拟结果与实验结果的对比. (a)镍基合金IN718的微观组织(实验,Parimi et al. 2014), (b)不锈钢316L的微观组织(实验,Wang Y M et al. 2018), (c)高熵合金FeCoCrNiMn的微观组织(实验,Zheng et al. 2021), (d)镍基合金IN718的微观组织(本文的模拟), (e)不锈钢316L的微观组织(本文的模拟), (f)高熵合金FeCoCrNiMn的微观组织(本文的模拟). (BD: building direction, 构件方向; SD: scanning direction, 扫描方向; TD: transverse direction, 横截面方向)

    图 4三维金属增材制造材料微观组织演化过程. (a)第一层打印,部分冷却区域发生晶粒形核; (b)第一层打印,冷却形核的晶粒逐渐长大; (c)第一层打印结束, 晶粒占据整个打印区域; (d)第二层打印,发生晶粒的重熔现象,红色实心箭头表示打印方向; (e)第二层打印,随着温度冷却,第一层重熔区与第二层打印区发生晶粒形核与长大; (f)第二层打印结束,形核长大的晶粒占据整个打印区域

    表 1三种增材制造合金的模拟参数

    材料 激光
    功率/
    W
    打印
    速度/
    (m·s−1)
    铺粉
    层厚/
    m
    元胞
    尺寸/
    m
    形核
    密度/
    m−2
    平均过冷
    度ΔTm/
    K
    标准差
    ΔTσ/
    K
    生长系数
    λ1/
    (m·s−1·K−1)
    λ2/
    (m·s−1·K−2)
    λ2/
    (m·s−1·K−3)
    IN718 390 3.33×10−3 3×10−4 5×10−6 2×109 9.5 2.0 1.77×10−5 1.58×10−5 2.29×10−6
    316L 250 1 3×10−5 2×10−6 1.24×1010 10.0 1.0 −1.20×10−3 −3.08×10−4 3.02×10−5
    FeCoCrNiMn 200 4×10−3 4×10−4 2×10−6 6.06×108 9.5 2.0 2.23×10−3 −1.30×10−4 6.94×10−6
    下载: 导出CSV
  • [1] 陈嘉伟, 熊飞宇, 黄辰阳, 廉艳平. 2020. 金属增材制造数值模拟. 中国科学:物理学 力学 天文学,50: 090007 (Chen J W, Xiong F Y, Huang C Y, Lian Y P. 2020. Numerical simulation on metallic additive manufacturing.Science Sinica Physica Mechanics & Astronomica,50: 090007).doi:10.1360/SSPMA-2020-0182

    (Chen J W, Xiong F Y, Huang C Y, Lian Y P. 2020. Numerical simulation on metallic additive manufacturing.Science Sinica Physica Mechanics & Astronomica,50: 090007).doi:10.1360/SSPMA-2020-0182
    [2] 郭洪民, 危仁杰, 杨湘杰. 2003. 一种改进的模拟凝固微观组织的宏微观耦合模型. 特种铸造及有色合金,5: 26-28 (Guo H M, Wei R J, Yang X J. 2003. A modeling of solidification microstructure of aluminum alloy.Special Casting & Nonferrous Alloys,5: 26-28).doi:10.3321/j.issn:1001-2249.2003.02.010

    (Guo H M, Wei R J, Yang X J. 2003. A modeling of solidification microstructure of aluminum alloy.Special Casting & Nonferrous Alloys,5: 26-28).doi:10.3321/j.issn:1001-2249.2003.02.010
    [3] 廉艳平, 王潘丁, 高杰, 刘继凯, 李取浩, 刘长猛, 贺小帆, 高亮, 李好, 雷红帅, 李会民, 肖登宝, 郭旭, 方岱宁. 2021. 金属增材制造若干关键力学问题研究进展. 力学进展,51: 648-701 (Lian Y P, Wang P D, Gao J, Liu J K, Li Q H, Liu C M, He X F, Gao L, Li H, Lei H S, Li H M, Xiao D B, Guo X, Fang D N. 2021. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review.Advances in Mechanics,51: 648-701).doi:10.6052/1000-0992-21-037

    (Lian Y P, Wang P D, Gao J, Liu J K, Li Q H, Liu C M, He X F, Gao L, Li H, Lei H S, Li H M, Xiao D B, Guo X, Fang D N. 2021. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review.Advances in Mechanics,51: 648-701).doi:10.6052/1000-0992-21-037
    [4] 许庆彦, 柳百成. 2001. 采用Cellular Automaton法模拟铝合金的微观组织. 中国机械工程,12: 328-331 (Xu Q Y, Liu B C. 2001. Microstructure simulation of Al alloy with cellular automaton method.China Mechanical Engineering,12: 328-331).doi:10.3321/j.issn:1004-132X.2001.03.329

    (Xu Q Y, Liu B C. 2001. Microstructure simulation of Al alloy with cellular automaton method.China Mechanical Engineering,12: 328-331).doi:10.3321/j.issn:1004-132X.2001.03.329
    [5] 赵明, 武传松, 陈茂爱. 2006. 焊接热过程数值分析中相变潜热的三种解决方案. 焊接学报,27: 55-58 (Zhao M, Wu C S, Chen M A. 2006. Solutions for latent heat of phase change in numerical analysis of arc welding.Transactions of the China Welding Institution,27: 55-58).doi:10.3321/j.issn:0253-360X.2006.09.014

    (Zhao M, Wu C S, Chen M A. 2006. Solutions for latent heat of phase change in numerical analysis of arc welding.Transactions of the China Welding Institution,27: 55-58).doi:10.3321/j.issn:0253-360X.2006.09.014
    [6] 支颖, 王振范, 刘相华. 2020. 元胞自动机在金属材料研究中的应用. 北京: 科学出版社

    Zhi Y, Wang Z F, Liu X H. 2020. Application of Cellular Automata in Research on Metal Materials. Beijing: Science Press
    [7] 朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 2016. 合金凝固过程中显微组织演化的元胞自动机模拟. 金属学报,52: 1297-1310 (Zhu M F, Tang Q Y, Zhang Q Y, Pan S Y, Sun D K. 2016. Cellular automaton modeling of microstructure evolution during alloy solidification.Acta Metallurgica Sinica,52: 1297-1310).doi:10.11900/0412.1961.2016.00361

    (Zhu M F, Tang Q Y, Zhang Q Y, Pan S Y, Sun D K. 2016. Cellular automaton modeling of microstructure evolution during alloy solidification.Acta Metallurgica Sinica,52: 1297-1310).doi:10.11900/0412.1961.2016.00361
    [8] Cheng B, Shrestha S, Chou K. 2016. Stress and deformation evaluations of scanning strategy effect in selective laser melting.Additive Manufacturing,12: 240-251.doi:10.1016/j.addma.2016.05.007
    [9] Fayazfar H, Salarian M, Rogalsky A, Sarker D, Russo P, Paserin V, Toyserkani E. 2018. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties.Materials and Design,144: 98-128.doi:10.1016/j.matdes.2018.02.018
    [10] Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi S. 2016. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed.Materials and Design,89: 255-263.doi:10.1016/j.matdes.2015.10.002
    [11] Gandin C A, Rappaz M. 1994. A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes.Acta Metallurgica,42: 2233-2246.doi:10.1016/0956-7151(94)90302-6
    [12] Gandin C A, Rappaz M. 1997. A 3D cellular automaton algorithm for the prediction of dendritic grain growth.Acta Materialia,45: 2187-2195.doi:10.1016/S1359-6454(96)00303-5
    [13] Godec M, Zaefferer S, Podgornik B, Sinko M, Tchernychova E. 2020. Quantitative multiscale correlative microstructure analysis of additive manufacturing of stainless steel 316L processed by selective laser melting.Materials Characterization,160: 110074.doi:10.1016/j.matchar.2019.110074
    [14] Han C, Fang Q, Shi Y, Tor S B, Chua C K, Zhou K. 2020. Recent advances on high-entropy alloys for 3D printing.Advanced Materials,32: 1903855.doi:10.1002/adma.201903855
    [15] Koepf J A, Soldner D, Ramsperger M, Mergheim J, Markl M, Korner C. 2019. Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting.Computational Materials Science,162: 148-155.doi:10.1016/j.commatsci.2019.03.004
    [16] Kurnsteiner P, Wilms M B, Weisheit A, Gault B, Jagle E A, Raabe D. 2020. High-strength damascus steel by additive manufacturing.Nature,582: 515-519.doi:10.1038/s41586-020-2409-3
    [17] Kurz W, Giovanola B, Trivedi R. 1986. Theory of microstructural development during rapid solidification.Acta Metallurgica,34: 823-830.doi:10.1016/0001-6160(86)90056-8
    [18] Lee K-H, Yun G J. 2020. A novel heat source model for analysis of melt pool evolution in selective laser melting process.Additive Manufacturing,36: 101497.doi:10.1016/j.addma.2020.101497
    [19] Lian Y, Gan Z, Yu C, Kats D, Liu W K, Wagner G J. 2019. A cellular automaton finite volume method for microstructure evolution during additive manufacturing.Materials and Design,169: 107672.doi:10.1016/j.matdes.2019.107672
    [20] Lian Y, Lin S, Yan W, Liu W K, Wagner G J. 2018. A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing.Computational Mechanics,61: 543-558.doi:10.1007/s00466-017-1535-8
    [21] Lipton J, Glicksman M, Kurz W. 1984. Dendritic growth into undercooled alloy metals.Materials Science and Engineering,65: 57-63.doi:10.1016/0025-5416(84)90199-X
    [22] Liu G, Zhang X, Chen X, He Y, Cheng L, Huo M, Yin J, Hao F, Chen S, Wang P, Yi S, Wan L, Mao Z, Chen Z, Wang X, Cao Z, Lu J. 2021. Additive manufacturing of structural materials.Materials Science and Engineering:R:Reports,145: 100596.doi:10.1016/j.mser.2020.100596
    [23] Liu S, Zhu H, Peng G, Yin J, Zeng X. 2018. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis.Materials and Design,142: 319-328.doi:10.1016/j.matdes.2018.01.022
    [24] Mohebbi M S, Ploshikhin V. 2020. Implementation of nucleation in cellular automaton simulation of microstructural evolution during additive manufacturing of Al alloys.Additive Manufacturing,36: 101726.doi:10.1016/j.addma.2020.101726
    [25] Panwisawas C, Tang Y T, Reed R C. 2020. Metal 3D printing as a disruptive technology for superalloys.Nature Communications,11: 2327.doi:10.1038/s41467-020-16188-7
    [26] Parimi L L, Ravi G A, Clark D, Attallah M M. 2014. Microstructural and texture development in direct laser fabricated IN718.Materials Characterization,89: 102-111.doi:10.1016/j.matchar.2013.12.012
    [27] Rai A, Helmer H, Korner C. 2017. Simulation of grain structure evolution during powder bed based additive manufacturing.Additive Manufacturing,13: 124-134.doi:10.1016/j.addma.2016.10.007
    [28] Rappaz M, Gandin C A. 1993. Probabilistic modeling of microstructure formation in solidification processes.Acta Metallurgica,41: 345-360.doi:10.1016/0956-7151(93)90065-Z
    [29] Rodgers T M, Madison J D, Tikare V. 2017. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo.Computational Materials Science,135: 78-89.doi:10.1016/j.commatsci.2017.03.053
    [30] Shi R, Khairallah S A, Roehling T T, Heo T W, McKeown J T, Matthews M J. 2020. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy.Acta Materialia,184: 284-305.doi:10.1016/j.actamat.2019.11.053
    [31] Wang W, Ji C, Luo S, Zhu M. 2018. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton.Metallurgical and Materials Transactions B,49: 200-212.doi:10.1007/s11663-017-1131-5
    [32] Wang Y M, Voisin T, McKeown J T, Ye J, Calta N P, Li Z, Zeng Z, Zhang Y, Chen W, Roehling T T, Ott R T, Santala M K, Depond P J, Matthews M J, Hamza A V, Zhu T. 2018. Additively manufactured hierarchical stainless steels with high strength and ductility.Nature Materials,17: 63-71.doi:10.1038/nmat5021
    [33] Xiong F, Gan Z, Chen J, Lian Y. 2022. Evaluate the effect of melt pool convection on grain structure of IN625 in laser melting process using experimentally validated process-structure modeling.Journal of Materials Processing Technology,303: 117538.doi:10.1016/j.jmatprotec.2022.117538
    [34] Xiong F, Huang C, Kafka O L, Lian Y, Yan W, Chen M, Fang D. 2021. Grain growth prediction in selective electron beam melting of Ti-6Al-4V with a cellular automaton method.Materials and Design,199: 109410.doi:10.1016/j.matdes.2020.109410
    [35] Yan W, Lin S, Kafka O L, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M, Ehmann K, Cao J, Wagner G J, Liu W K. 2018. Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing.Computational Mechanics,61: 521-541.doi:10.1007/s00466-018-1539-z
    [36] Yang J, Yu H, Yang H, Li F, Wang Z, Zeng X. 2018. Prediction of microstructure in selective laser melted Ti6Al4V alloy by cellular automaton.Journal of Alloys and Compounds,748: 281-290.doi:10.1016/j.jallcom.2018.03.116
    [37] Zhang D, Qiu D, Gibson M A, Zheng Y, Fraser H L, StJohn D H, Easton M A. 2019. Additive manufacturing of ultrafine-grained high-strength titanium alloys.Nature,576: 91-95.doi:10.1038/s41586-019-1783-1
    [38] Zheng M, Li C, Zhang X, Ye Z, Yang X, Gu J. 2021. The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition.Additive Manufacturing,37: 101660.doi:10.1016/j.addma.2020.101660
    [39] Zinoviev A, Zinovieva O, Ploshikhin V, Romanova V, Balokhonov R. 2016. Evolution of grain structure during laser additive manufacturing simulation by a cellular automata method.Materials and Design,106: 321-329.doi:10.1016/j.matdes.2016.05.125
    [40] Zinovieva O, Zinoviev A, Ploshikhin V. 2018. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing.Computational Materials Science,141: 207-220.doi:10.1016/j.commatsci.2017.09.018
    [41] Zinovieva O, Zinoviev A, Ploshikhin V, Romanova V, Balokhonov R. 2015. A solution to the problem of the mesh anisotropy in cellular automata simulations of grain growth.Computational Materials Science,108: 168-176.doi:10.1016/j.commatsci.2015.06.026
  • 加载中
图(4)/ 表(1)
计量
  • 文章访问数:1796
  • HTML全文浏览量:501
  • PDF下载量:450
  • 被引次数:0
出版历程
  • 收稿日期:2022-04-18
  • 录用日期:2022-06-09
  • 网络出版日期:2022-06-14
  • 刊出日期:2022-06-25

目录

    /

      返回文章
      返回

        Baidu
        map