Volume 52Issue 1
Mar. 2022
Turn off MathJax
Article Contents
Hu H W, Song P, Deng G Q, Xiao C. Characteristics of thermobaric explosives and their advances . Advances in Mechanics, 2022, 52(1): 53-78 doi: 10.6052/1000-0992-21-021
Citation: Hu H W, Song P, Deng G Q, Xiao C. Characteristics of thermobaric explosives and their advances .AdvancesinMechanics, 2022, 52(1): 53-78doi:10.6052/1000-0992-21-021

Characteristics of thermobaric explosives and their advances

doi:10.6052/1000-0992-21-021
More Information
  • Corresponding author:hhw505@163.com
  • Received Date:2021-04-23
  • Accepted Date:2021-10-06
  • Available Online:2021-10-09
  • Publish Date:2022-03-21
  • The detonation of thermobaric explosives involves ignition, detonation, propagation and reflection of shock wave, multi-phase turbulence, and multi-mode chemical reaction. It is a coupling process of multi-scale, multi-material, multi-factor, and multi-physical field. A deep understanding of the detonation mechanism of thermobaric explosion and effective control and utilization of the explosion are critical to the innovation and development of thermobaric weapons. It can guide the design, development and applications of high-power thermobaric explosives and weapons. Firstly, this paper describes the origin of thermobaric explosives and the basic principle of thermobaric explosion, and discusses the concept and connotation of thermobaric explosives. Secondly, the characteristics of thermobaric explosives from the aspects of explosive kinds, energy release characteristics, energy composition, blast reaction mechanism, blast effect enhancement mechanism and killing mechanism are elaborated. And then the evaluation method of explosion power of thermobaric explosives in confined space and the state of art of thermobaric explosives were summarized. Finally, we give some relevant suggestions that wcould provide guidance for the design of high power thermobaric explosive, the development of thermobaric bombs and damage assessment.

  • loading
  • [1]
    曹威, 何中其, 陈网桦. 2014. TNT后燃反应的水下爆炸实验研究与数值模拟. 高压物理学报, 28: 443-449 (Cao W, He Z Q, Chen W H. 2014. Experimental research and numerical simulation of afterburning reaction of TNT explosive by underwater explosion. Chinese Journal of High Pressure Physics, 28: 443-449). doi:10.11858/gywlxb.2014.04.009
    [2]
    曹威, 何中其, 陈网桦等. 2012. 水下爆炸法测量含铝炸药后燃效应. 含能材料, 20: 229-233 (Cao W, He Z Q, Chen W H, et al. 2012. Measurement of afterburning effect of aluminized explosives by underwater explosion method. Chinese Journal of Energetic Materials, 20: 229-233). doi:10.3969/j.issn.1006-9941.2012.02.020
    [3]
    郭美芳. 2003. 战场新宠—温压弹. 现代兵器, 5: 14-16 (Guo M F. 2003. The darling of war. ModernWeapon, 5: 14-16).
    [4]
    胡宏伟, 冯海云, 肖川等. 2016. 基于顶盖举起试验的炸药内爆炸性能评估. 火炸药学报, 39: 53-57 (Hu H W, Feng H Y, Xiao C, et al. 2016. Evaluation of the internal blast performance of explosives based on roof lift test. Chinese Journal of Explosives & Propellants, 39: 53-57).
    [5]
    胡宏伟, 宋浦, 赵省向等. 2013. 有限空间内部爆炸研究进展. 含能材料, 21: 539-546 (Hu H W, Song P, Zhao S X, et al. 2013. Progress in explosion in confined space. Chinese Journal of Energetic Materials, 21: 539-546). doi:10.3969/j.issn.1006-9941.2013.04.026
    [6]
    胡宏伟, 肖川, 李丽等. 2013. 有限空间炸药装药内爆炸威力的评估方法综述. 火炸药学报, 36: 1-6 (HU H W, XIAO C, LI L, et al. 2013. Review on evaluation methods of blast power in confined space. Chinese Journal of Explosives & Propellants, 36: 1-6). doi:10.3969/j.issn.1007-7812.2013.01.001
    [7]
    李林. 2005. 温压弹的原理与实践. 现代军事, 1: 55-57 (Li L. 2005. Principle and practice of thermobaric bomb. Modern Military, 1: 55-57).
    [8]
    朴忠杰, 张爱娥, 罗宇等. 2019. 铝粉粒度对奥克托今基空爆温压炸药能量释放的影响. 兵工学报, 40: 1190-1197 (Piao Z J, Zhang A E, Luo Y. 2019. Influence of aluminum powder on energy release of HMX-based air-blast thermobaric explosives. Acta Armamentaria, 40: 1190-1197). doi:10.3969/j.issn.1000-1093.2019.06.009
    [9]
    裴明敬, 田朝阳, 胡华权等. 2013. 铝粉在温压炸药爆炸过程中的响应分析. 火炸药学报, 36: 7-12 (Pei M J, Tian C Y, Hu H Q, et al. 2013. Response analysis of aluminum in the process of thermobaric explosive detonation. Chinese Journal of Explosives & Propellants, 36: 7-12). doi:10.3969/j.issn.1007-7812.2013.04.002
    [10]
    王明烨, 韩志伟, 李席等. 2018. 铝粉粒径对温压炸药爆炸性能及热安定性的影响. 高压物理学报, 32: 035201 (Wang M Y, Han Z W, Li X, et al. 2018. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive. Chinese Journal of High Pressure Physics, 32: 035201).
    [11]
    王晓峰, 冯晓军. 2016. 温压炸药设计原则探讨. 含能材料, 24: 418-420 (Wang X F, Feng X J. 2016. Discussion on design principle of thermobaric explosives. Chinese Journal of Energetic Materials, 24: 418-420). doi:10.11943/j.issn.1006-9941.2016.05.00X
    [12]
    杨志剑, 刘晓波, 何冠松等. 2017. 混合炸药设计研究进展. 含能材料, 25: 2-11 (Yang J Z, Liu X B, He G S, et al. 2017. Advance in design and research of composite explosives. Chinese Journal of Energetic Materials, 25: 2-11). doi:10.11943/j.issn.1006-9941.2017.01.001
    [13]
    郑朝民, 严蕊, 刘志伟等. 2014. 温压炸药耗氧效应的实验研究. 火炸药学报, 37: 33-36 (Zheng C M, Yan R, Liu Z W, et al. 2014. Experimental study on oxygen consumption effect of thermo-baric explosives. Chinese Journal of Explosives & Propellants, 37: 33-36). doi:10.3969/j.issn.1007-7812.2014.03.008
    [14]
    Andrew R D, Scott D H, Gregory D K. 2008. Detonation calorimeter: application and operation for thermobaric explosive characterization and evaluation// Proceeding of the 36 thNorth American Thermal Analysis Society Conference, Atlanta: North American Thermal Analysis Society.
    [15]
    Arnold W, Rottenkolber E. 2007. Thermobaric charges: modeling and testing//38th International Annual Conference of ICT, Karlsruhe, Germany, V02.
    [16]
    Arnold, W. , Rottenkolber, E. 2008. Combustion of an aluminized explosive in a detonation chamber//39th International Annual Conference of ICT, Karlsruhe, Germany, V33.
    [17]
    Baker J J. 2010. Thermobaric explosives, articles of manufacture, and methods comprising the same. US Patent US 7807000 B1 20101005.
    [18]
    Barbara S. 2003. Tests massive bomb. CNN.
    [19]
    Carlson R W. 1945. Confinement of an explosion by a steel vessel. Los Alamos: LANL, LA-390.
    [20]
    Chabin P, Nouguez B. 2009. Insensitive enhanced blast formulations. Insensitive Munitions& Energetic Materials Technology Symposium, Tucson: NDIA.
    [21]
    Chan M L, Meyers G W. 2005. Advanced thermobaric explosive compositions. US Patent: US 6955732 B1, 2005-10-18.
    [22]
    Danica M S, Ivan D D, Radoslav S S. 2018. Thermobaric performance of cast PBX with nano-sized aluminum//49th International Annual Conference of the Fraunhofer ICT, Karlsruhe Germany, June 26-29, p131.
    [23]
    David L F, Samuel G, Robert R, et al. 2017. Interaction of a blast wave with a metalized explosive fireball//14th International Detonation Symposium. Idaho: Office of Naval Research, 42: 632-644
    [24]
    David Tassia P E. 1996. Internal Blast Test to Support the Tomahawk and APET Programs//Insensitive Munitions & Energetic Materials Technology Symposium, San Diego: NDIA.
    [25]
    Donahue L, Whitehousel D R, Josey T, et al. 2004. Non-ideal blast effects for vulnerability/lethality analyses//21st International Symposium on Ballistics. Adelaide: South Australian Postgraduate Education Association.
    [26]
    Dreizin E L, Schoenitz M, Shoshin Y L, et al. 2005. Highly energetic nanocomposite powders produced by arrested reactive milling//36th Int. Annual Conference of ICT and 32nd International Pyrotechnics Seminar, Karlsruhe, Germany.
    [27]
    Gerber P, Kessler A, Eisele S, et al. 2010. Formulation and characterization of enhanced blast explosives//International Annual Conference of ICT (2010), 41th Energetic Materials: For High Performance, Insensitive Munitions and Zero Pollution, Karlsruhe Germany, gerbe1/1-gerbe1/8.
    [28]
    Gogulya M F, Brazhnikov M A. 2010. Pressure and temperature of the detonation products of explosive materials containing aluminum of various dispersities. Russian Journal of Physical ChemistryB; 4: 773–87.
    [29]
    Hahma A, Palovuori K, Romu H. 2002. Experimental studies on metal fueled thermobaric explosives// Proceedings of the Seminar, Levi, Finland, September 9–11, p 211-218.
    [30]
    Hall S, Knowlton G D. 2004. Development, characterization and testing of high blast thermobaric compositions//Proc. 31st Int. Pyrotech. Seminar. Fort Collins, 663-678.
    [31]
    Hilbert R, Tap F, Rabii HE Thvenin D. 2004. Impact of detailed chemistry and transport models on turbulent combustion simulations. Progress in Energy Combustion Science, 30: 61-117. doi:10.1016/j.pecs.2003.10.001
    [32]
    Jane’s Air-Launched Weapons, 26-May-2020. Weapons: Air Launched-BLU-121/B thermobaric warhead. www. janes. com.
    [33]
    Jane’s Air-Launched Weapons, 29-Apr-2015. BLU-118B thermobaric warhead. www. janes. com (accessed 7 Jan 2003).
    [34]
    Johnson N, Carpenter P, Newman K, et al. 2004. Evaluation of explosive candidates for a thermobaric M72 law shoulder launched weapon//NDIA 39th Annual Gun and Ammunition/Missiles and Rockets Conference, Baltimore, MD, USA.
    [35]
    Kellett R M. . 2009. Exothermic alloying Al-Ni bimetallic nanoparticles dispersed within explosives. PCT Int. Appl.(2009), WO 2009046287 A1 20090409.
    [36]
    Kim C K, Moon J G, Hwang J S, et al. 2008. Afterburning of TNT explosive products in air with aluminum particles//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno , NV, USA, AIAA.
    [37]
    Kim S H, Park J S, Kim J K. 2004. Internal blast test on explosives developed in Korea//Proceedings of the 35th International Conference of ICT, Karlsruhe, Germany.
    [38]
    Lee K B, Lee K D, Kim J K. 2005. Relationship between combustion heat and blast performance of aluminized explosives//36th Int. Annual Conference of ICT, Karlsruhe, Germany.
    [39]
    Lin B Q, Li W X, Zhu C J, Lu H L, Lu Z G Li Q Z. 2010. Experimental investigation on explosion characteristics of nano-aluminum powder–air mixtures. Combustion Explosion Shock Waves, 46: 78-82.
    [40]
    Lips H, Helou S, Rittel R. 2010. Selection of an applicable SIBEX explosive for SLW//International Annual Conference of ICT (2010), 41st Energetic Materials: For High Performance, Insensitive Munitions and Zero Pollution, Karlsruhe, Germany, June 29-July 02, lips1/1-lips1/10.
    [41]
    Makhov M. 2004. Explosion heat of Boron-containing explosive compositions//35th International Conference of IC, Karlsruhe Germany: ICT.
    [42]
    McFadden D. 2003. Development and characterization of high heat Thermobaric composition. Doc No TR16006, Ialley Defense Systems.
    [43]
    Michael D, Andrews W S, Jaansalu K M. 2005. The Fragmentation of Metal Cylinders by Thermobaric Explosives. Kingston, CANADA: Royal Military College of Canada.
    [44]
    Mohamed A K, Mostafa H E, Elbasuney S. 2016. Nanoscopic fuel-rich thermobaric formulations: Chemical composition optimization and sustained secondary combustion shock wave modulation. Jourmal of Hazardous Materials, 301: 492-503. doi:10.1016/j.jhazmat.2015.09.019
    [45]
    Moir D C. 1979. Safety analysis of the M-2 comfinement systems. Los Alamos: LANL, LA-TM-264.
    [46]
    Muravyev N, Frolov Y, Pivkina A, et a1. 2010. Influence of particle size and mixing technology on combustion of HMX/A1 composition. Propellants Explosives Pyrotechnics, 35: 226232.
    [47]
    Nicolich S M, Capellos C, Balas W A, Akester J D, Hatch RL. 2012. High-blast explosive compositions containing particulate metal. US Patent: US 8168016 B1, 2012-05-01.
    [48]
    Peuker J M, Krier H, Glumac N. 2013. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives. Proceedings of the Combustion Institute, 34: 2205-2212. doi:10.1016/j.proci.2012.05.069
    [49]
    Richard G A, Jason T D, Joseph S, et al. 2006. Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions//13th International Detonation Symposium, Norfolk Virginia. : Office of Naval Research.
    [50]
    Richard J L, Kirk E N, Douglas G B , et al. 2010. Combined initial air blast and quasi-static overpressure assessment for pressed aluminized explosives// Proceedings 14th International Detonation Symposium, Idaho: Office of Naval Research.
    [51]
    Schaefer R A, Nicolich S M. 2005. Development and evaluation of new high blast explosives//36th International Conference of ICT, Karlsruhe, Germany, June 28–July 1, V9.
    [52]
    Scott D H, Gregory D K. 2005. Development, characterization and testing of high Blast thermataric compositions// The 31th International Pyrotechnics Seminer, Fort Collins: AIDICO.
    [53]
    Sheridan E W, Hugus G D, Brooks G W. 2011. Enhanced blast explosive, US Patent: US 7998290 B2, 2011-07-05.
    [54]
    Simic D, Petkovic J, Milojkovic A, et al. 2013. Influence of composition on the processability of thermobaric explosives. Sci Tech Rev, 63: 3-8.
    [55]
    Trzciński W A, Barcz K. 2012. Investigation of blast wave characteristics for layered thermobaric charges. Shock Waves, 22: 119-127. doi:10.1007/s00193-012-0357-z
    [56]
    Trzciński W A, Barcz K, et al. 2014. Investigation of blast performance and solid residues for layered thermobaric charges. Propellants Explosives Pyrotechnice, 39: 40-50. doi:10.1002/prep.201300011
    [57]
    Trzcinski W A, Cudzilo S, Paszula J, Callaway J. 2008. Study of the effect of additive particles size on non-ideal explosive performance. Propellants Explosives Pyrotechnics, 335: 227-35.
    [58]
    Trzciński W A, Maiz L. 2015. Thermobaric and enhanced blast explosives-properties and testing methods(review). Propellants, Explosives, Pyrotechnics, 40: 632-644. doi:10.1002/prep.201400281
    [59]
    Türker L. 2016. Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12: 423-445.
    [60]
    van der Heijden A E D M, Creyghton Y L M, van de Peppel R J E, et al. 2010. Modification and characterization of (energetic) nanomaterials. Journal of Physics and Chemistry Solids, 71: 59-63. doi:10.1016/j.jpcs.2009.09.007
    [61]
    Vadhe P P, Pawar R B, Sinha R K, et al. 2008. Cast aluminized explosives (review). Combustion Explosion & Shock Waves, 44: 461-77. doi:10.1007/s10573-008-0073-2
    [62]
    Weiser V, Roth E, Raab A, et al. 2011. Combustion of fuel particles (Al, B, Mg, Si, Ti, Zr) in combination with RDX and the influence of additional air//37th International Pyrotechnics Seminar EUROPYRO 2011, Reims France, 36–53.
    [63]
    Wildegger-Gaissmaier A E. 2003. Aspects of thermobaric weaponry. ADF Health, 4: 3-6.
    [64]
    Wolan´ski P, Gut Z, Trzcin´ski WA, Szyman´czyk L, Paszula J. 2000. Visualization of turbulent combustion of TNT detonation products in steel vessel. Shock Waves, 10: 127-36. doi:10.1007/s001930050186
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)/Tables(6)

    Article Metrics

    Article views (6277) PDF downloads(757) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map