Citation: | Hu H W, Song P, Deng G Q, Xiao C. Characteristics of thermobaric explosives and their advances .AdvancesinMechanics, 2022, 52(1): 53-78doi:10.6052/1000-0992-21-021 |
[1] |
曹威, 何中其, 陈网桦. 2014. TNT后燃反应的水下爆炸实验研究与数值模拟. 高压物理学报,
28: 443-449 (Cao W, He Z Q, Chen W H. 2014. Experimental research and numerical simulation of afterburning reaction of TNT explosive by underwater explosion.
Chinese Journal of High Pressure Physics,
28: 443-449).
doi:10.11858/gywlxb.2014.04.009
|
[2] |
曹威, 何中其, 陈网桦等. 2012. 水下爆炸法测量含铝炸药后燃效应. 含能材料,
20: 229-233 (Cao W, He Z Q, Chen W H, et al. 2012. Measurement of afterburning effect of aluminized explosives by underwater explosion method.
Chinese Journal of Energetic Materials,
20: 229-233).
doi:10.3969/j.issn.1006-9941.2012.02.020
|
[3] |
郭美芳. 2003. 战场新宠—温压弹. 现代兵器,
5: 14-16 (Guo M F. 2003. The darling of war.
ModernWeapon,
5: 14-16).
|
[4] |
胡宏伟, 冯海云, 肖川等. 2016. 基于顶盖举起试验的炸药内爆炸性能评估. 火炸药学报,
39: 53-57 (Hu H W, Feng H Y, Xiao C, et al. 2016. Evaluation of the internal blast performance of explosives based on roof lift test.
Chinese Journal of Explosives & Propellants,
39: 53-57).
|
[5] |
胡宏伟, 宋浦, 赵省向等. 2013. 有限空间内部爆炸研究进展. 含能材料,
21: 539-546 (Hu H W, Song P, Zhao S X, et al. 2013. Progress in explosion in confined space.
Chinese Journal of Energetic Materials,
21: 539-546).
doi:10.3969/j.issn.1006-9941.2013.04.026
|
[6] |
胡宏伟, 肖川, 李丽等. 2013. 有限空间炸药装药内爆炸威力的评估方法综述. 火炸药学报,
36: 1-6 (HU H W, XIAO C, LI L, et al. 2013. Review on evaluation methods of blast power in confined space.
Chinese Journal of Explosives & Propellants,
36: 1-6).
doi:10.3969/j.issn.1007-7812.2013.01.001
|
[7] |
李林. 2005. 温压弹的原理与实践. 现代军事,
1: 55-57 (Li L. 2005. Principle and practice of thermobaric bomb.
Modern Military,
1: 55-57).
|
[8] |
朴忠杰, 张爱娥, 罗宇等. 2019. 铝粉粒度对奥克托今基空爆温压炸药能量释放的影响. 兵工学报,
40: 1190-1197 (Piao Z J, Zhang A E, Luo Y. 2019. Influence of aluminum powder on energy release of HMX-based air-blast thermobaric explosives.
Acta Armamentaria,
40: 1190-1197).
doi:10.3969/j.issn.1000-1093.2019.06.009
|
[9] |
裴明敬, 田朝阳, 胡华权等. 2013. 铝粉在温压炸药爆炸过程中的响应分析. 火炸药学报,
36: 7-12 (Pei M J, Tian C Y, Hu H Q, et al. 2013. Response analysis of aluminum in the process of thermobaric explosive detonation.
Chinese Journal of Explosives & Propellants,
36: 7-12).
doi:10.3969/j.issn.1007-7812.2013.04.002
|
[10] |
王明烨, 韩志伟, 李席等. 2018. 铝粉粒径对温压炸药爆炸性能及热安定性的影响. 高压物理学报,
32: 035201 (Wang M Y, Han Z W, Li X, et al. 2018. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive.
Chinese Journal of High Pressure Physics,
32: 035201).
|
[11] |
王晓峰, 冯晓军. 2016. 温压炸药设计原则探讨. 含能材料,
24: 418-420 (Wang X F, Feng X J. 2016. Discussion on design principle of thermobaric explosives.
Chinese Journal of Energetic Materials,
24: 418-420).
doi:10.11943/j.issn.1006-9941.2016.05.00X
|
[12] |
杨志剑, 刘晓波, 何冠松等. 2017. 混合炸药设计研究进展. 含能材料,
25: 2-11 (Yang J Z, Liu X B, He G S, et al. 2017. Advance in design and research of composite explosives.
Chinese Journal of Energetic Materials,
25: 2-11).
doi:10.11943/j.issn.1006-9941.2017.01.001
|
[13] |
郑朝民, 严蕊, 刘志伟等. 2014. 温压炸药耗氧效应的实验研究. 火炸药学报,
37: 33-36 (Zheng C M, Yan R, Liu Z W, et al. 2014. Experimental study on oxygen consumption effect of thermo-baric explosives.
Chinese Journal of Explosives & Propellants,
37: 33-36).
doi:10.3969/j.issn.1007-7812.2014.03.008
|
[14] |
Andrew R D, Scott D H, Gregory D K. 2008. Detonation calorimeter: application and operation for thermobaric explosive characterization and evaluation// Proceeding of the 36
thNorth American Thermal Analysis Society Conference, Atlanta: North American Thermal Analysis Society.
|
[15] |
Arnold W, Rottenkolber E. 2007. Thermobaric charges: modeling and testing//38th International Annual Conference of ICT, Karlsruhe, Germany, V02.
|
[16] |
Arnold, W. , Rottenkolber, E. 2008. Combustion of an aluminized explosive in a detonation chamber//39th International Annual Conference of ICT, Karlsruhe, Germany, V33.
|
[17] |
Baker J J. 2010. Thermobaric explosives, articles of manufacture, and methods comprising the same. US Patent US 7807000 B1 20101005.
|
[18] |
Barbara S. 2003. Tests massive bomb. CNN.
|
[19] |
Carlson R W. 1945. Confinement of an explosion by a steel vessel.
Los Alamos:
LANL, LA-390.
|
[20] |
Chabin P, Nouguez B. 2009. Insensitive enhanced blast formulations.
Insensitive Munitions&
Energetic Materials Technology Symposium, Tucson: NDIA.
|
[21] |
Chan M L, Meyers G W. 2005. Advanced thermobaric explosive compositions. US Patent: US 6955732 B1, 2005-10-18.
|
[22] |
Danica M S, Ivan D D, Radoslav S S. 2018. Thermobaric performance of cast PBX with nano-sized aluminum//49th International Annual Conference of the Fraunhofer ICT, Karlsruhe Germany, June 26-29, p131.
|
[23] |
David L F, Samuel G, Robert R, et al. 2017. Interaction of a blast wave with a metalized explosive fireball//14th International Detonation Symposium. Idaho: Office of Naval Research,
42: 632-644
|
[24] |
David Tassia P E. 1996. Internal Blast Test to Support the Tomahawk and APET Programs//Insensitive Munitions & Energetic Materials Technology Symposium, San Diego: NDIA.
|
[25] |
Donahue L, Whitehousel D R, Josey T, et al. 2004. Non-ideal blast effects for vulnerability/lethality analyses//21st International Symposium on Ballistics. Adelaide: South Australian Postgraduate Education Association.
|
[26] |
Dreizin E L, Schoenitz M, Shoshin Y L, et al. 2005. Highly energetic nanocomposite powders produced by arrested reactive milling//36th Int. Annual Conference of ICT and 32nd International Pyrotechnics Seminar, Karlsruhe, Germany.
|
[27] |
Gerber P, Kessler A, Eisele S, et al. 2010. Formulation and characterization of enhanced blast explosives//International Annual Conference of ICT (2010), 41th Energetic Materials: For High Performance, Insensitive Munitions and Zero Pollution, Karlsruhe Germany, gerbe1/1-gerbe1/8.
|
[28] |
Gogulya M F, Brazhnikov M A. 2010. Pressure and temperature of the detonation products of explosive materials containing aluminum of various dispersities.
Russian Journal of Physical ChemistryB;
4: 773–87.
|
[29] |
Hahma A, Palovuori K, Romu H. 2002. Experimental studies on metal fueled thermobaric explosives// Proceedings of the Seminar, Levi, Finland, September 9–11, p 211-218.
|
[30] |
Hall S, Knowlton G D. 2004. Development, characterization and testing of high blast thermobaric compositions//Proc. 31st Int. Pyrotech. Seminar.
Fort Collins, 663-678.
|
[31] |
Hilbert R, Tap F, Rabii HE Thvenin D. 2004. Impact of detailed chemistry and transport models on turbulent combustion simulations.
Progress in Energy Combustion Science,
30: 61-117.
doi:10.1016/j.pecs.2003.10.001
|
[32] |
Jane’s Air-Launched Weapons, 26-May-2020. Weapons: Air Launched-BLU-121/B thermobaric warhead. www. janes. com.
|
[33] |
Jane’s Air-Launched Weapons, 29-Apr-2015. BLU-118B thermobaric warhead. www. janes. com (accessed 7 Jan 2003).
|
[34] |
Johnson N, Carpenter P, Newman K, et al. 2004. Evaluation of explosive candidates for a thermobaric M72 law shoulder launched weapon//NDIA 39th Annual Gun and Ammunition/Missiles and Rockets Conference, Baltimore, MD, USA.
|
[35] |
Kellett R M. . 2009. Exothermic alloying Al-Ni bimetallic nanoparticles dispersed within explosives.
PCT Int. Appl.(2009), WO 2009046287 A1 20090409.
|
[36] |
Kim C K, Moon J G, Hwang J S, et al. 2008. Afterburning of TNT explosive products in air with aluminum particles//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno , NV, USA, AIAA.
|
[37] |
Kim S H, Park J S, Kim J K. 2004. Internal blast test on explosives developed in Korea//Proceedings of the 35th International Conference of ICT, Karlsruhe, Germany.
|
[38] |
Lee K B, Lee K D, Kim J K. 2005. Relationship between combustion heat and blast performance of aluminized explosives//36th Int. Annual Conference of ICT, Karlsruhe, Germany.
|
[39] |
Lin B Q, Li W X, Zhu C J, Lu H L, Lu Z G Li Q Z. 2010. Experimental investigation on explosion characteristics of nano-aluminum powder–air mixtures.
Combustion Explosion Shock Waves,
46: 78-82.
|
[40] |
Lips H, Helou S, Rittel R. 2010. Selection of an applicable SIBEX explosive for SLW//International Annual Conference of ICT (2010), 41st Energetic Materials: For High Performance, Insensitive Munitions and Zero Pollution, Karlsruhe, Germany, June 29-July 02, lips1/1-lips1/10.
|
[41] |
Makhov M. 2004. Explosion heat of Boron-containing explosive compositions//35th International Conference of IC, Karlsruhe Germany: ICT.
|
[42] |
McFadden D. 2003. Development and characterization of high heat Thermobaric composition. Doc No TR16006, Ialley Defense Systems.
|
[43] |
Michael D, Andrews W S, Jaansalu K M. 2005. The Fragmentation of Metal Cylinders by Thermobaric Explosives. Kingston, CANADA: Royal Military College of Canada.
|
[44] |
Mohamed A K, Mostafa H E, Elbasuney S. 2016. Nanoscopic fuel-rich thermobaric formulations: Chemical composition optimization and sustained secondary combustion shock wave modulation.
Jourmal of Hazardous Materials,
301: 492-503.
doi:10.1016/j.jhazmat.2015.09.019
|
[45] |
Moir D C. 1979. Safety analysis of the M-2 comfinement systems. Los Alamos: LANL, LA-TM-264.
|
[46] |
Muravyev N, Frolov Y, Pivkina A, et a1. 2010. Influence of particle size and mixing technology on combustion of HMX/A1 composition.
Propellants Explosives Pyrotechnics,
35: 226232.
|
[47] |
Nicolich S M, Capellos C, Balas W A, Akester J D, Hatch RL. 2012. High-blast explosive compositions containing particulate metal. US Patent: US 8168016 B1, 2012-05-01.
|
[48] |
Peuker J M, Krier H, Glumac N. 2013. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives.
Proceedings of the Combustion Institute,
34: 2205-2212.
doi:10.1016/j.proci.2012.05.069
|
[49] |
Richard G A, Jason T D, Joseph S, et al. 2006. Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions//13th International Detonation Symposium, Norfolk Virginia. : Office of Naval Research.
|
[50] |
Richard J L, Kirk E N, Douglas G B , et al. 2010. Combined initial air blast and quasi-static overpressure assessment for pressed aluminized explosives// Proceedings 14th International Detonation Symposium, Idaho: Office of Naval Research.
|
[51] |
Schaefer R A, Nicolich S M. 2005. Development and evaluation of new high blast explosives//36th International Conference of ICT, Karlsruhe, Germany, June 28–July 1, V9.
|
[52] |
Scott D H, Gregory D K. 2005. Development, characterization and testing of high Blast thermataric compositions// The 31th International Pyrotechnics Seminer, Fort Collins: AIDICO.
|
[53] |
Sheridan E W, Hugus G D, Brooks G W. 2011. Enhanced blast explosive, US Patent: US 7998290 B2, 2011-07-05.
|
[54] |
Simic D, Petkovic J, Milojkovic A, et al. 2013. Influence of composition on the processability of thermobaric explosives.
Sci Tech Rev,
63: 3-8.
|
[55] |
Trzciński W A, Barcz K. 2012. Investigation of blast wave characteristics for layered thermobaric charges.
Shock Waves,
22: 119-127.
doi:10.1007/s00193-012-0357-z
|
[56] |
Trzciński W A, Barcz K, et al. 2014. Investigation of blast performance and solid residues for layered thermobaric charges.
Propellants Explosives Pyrotechnice,
39: 40-50.
doi:10.1002/prep.201300011
|
[57] |
Trzcinski W A, Cudzilo S, Paszula J, Callaway J. 2008. Study of the effect of additive particles size on non-ideal explosive performance.
Propellants Explosives Pyrotechnics,
335: 227-35.
|
[58] |
Trzciński W A, Maiz L. 2015. Thermobaric and enhanced blast explosives-properties and testing methods(review).
Propellants, Explosives, Pyrotechnics,
40: 632-644.
doi:10.1002/prep.201400281
|
[59] |
Türker L. 2016. Thermobaric and enhanced blast explosives (TBX and EBX).
Defence Technology,
12: 423-445.
|
[60] |
van der Heijden A E D M, Creyghton Y L M, van de Peppel R J E, et al. 2010. Modification and characterization of (energetic) nanomaterials.
Journal of Physics and Chemistry Solids,
71: 59-63.
doi:10.1016/j.jpcs.2009.09.007
|
[61] |
Vadhe P P, Pawar R B, Sinha R K, et al. 2008. Cast aluminized explosives (review).
Combustion Explosion & Shock Waves,
44: 461-77.
doi:10.1007/s10573-008-0073-2
|
[62] |
Weiser V, Roth E, Raab A, et al. 2011. Combustion of fuel particles (Al, B, Mg, Si, Ti, Zr) in combination with RDX and the influence of additional air//37th International Pyrotechnics Seminar EUROPYRO 2011, Reims France, 36–53.
|
[63] |
Wildegger-Gaissmaier A E. 2003. Aspects of thermobaric weaponry.
ADF Health,
4: 3-6.
|
[64] |
Wolan´ski P, Gut Z, Trzcin´ski WA, Szyman´czyk L, Paszula J. 2000. Visualization of turbulent combustion of TNT detonation products in steel vessel.
Shock Waves,
10: 127-36.
doi:10.1007/s001930050186
|