Volume 53 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Chen Y, Gu Y Q. Review on origami kinematics. Advances in Mechanics, 2023, 53(1): 154-197 doi: 10.6052/1000-0992-22-040
Citation: Chen Y, Gu Y Q. Review on origami kinematics. Advances in Mechanics, 2023, 53(1): 154-197 doi: 10.6052/1000-0992-22-040

Review on origami kinematics

doi: 10.6052/1000-0992-22-040
More Information
  • Corresponding author: yan_chen@tju.edu.cn
  • Received Date: 2022-07-28
  • Accepted Date: 2022-09-21
  • Available Online: 2022-09-26
  • Publish Date: 2023-03-25
  • Origami is no longer a folk art with the development of origami engineering in this century, in which a lot of previous work of mathematicians has surfaced and the engineering applications present new challenges to describe the folding process of rigid origami. Meanwhile, origami is not limited to the thin sheet, the folding and unfolding of thick panels have always hindered their related engineering applications. Recently, the development of metamaterials has brought a leap from toys to high technology for modular origami. How to coordinately set up the origami modules to enable the entire structure with excellent and tunable performance is a new hotspot in modular origami. Hence, origami kinematics has played a decisive role in many applications and explorations. This review focuses on the developed mechanism theories and their applications in the analysis and design of origami structures, which hopefully could be able to provide the theoretical foundation for origami engineering.

     

  • loading
  • 陈焱. 2020. 基于机构运动的大变形超材料. 机械工程学报, 56: 2-13 (Chen Y. 2020. Review on kinematic metamaterials. Journal of Mechanical Engineering, 56(19): 2-13 (in Chinese)).
    杨富富. 2017. 基于桁架方法的空间过约束机构分析与可变多面体设计.[博士论文]. 天津: 天津大学 (Yang F F. 2017. Truss method for kinematic analysis of 3D overconstrained linkages and design of transformable polyhedrons. [PhD Thesis]. Tianjin: Tianjin University).
    张霄. 2018. 空间机构网格与刚性折纸的关联研究.[博士论文]. 天津: 天津大学 (Zhang X. 2018. Study on the relationship between mobile assemblies of spatial linkages and rigid origami. [PhD Thesis]. Tianjin: Tianjin University).
    Altmann S. 1986. Rotations, Quaternions, and Double Groups. Oxford University Press.
    Ball R S. 1876. The Theory of Screws: A Study in the Dynamics of a Rigid Body. Dublin, Hodges, Forster and Co.
    Beech R. 2009. The Practical Illustrated Encyclopedia of Origami: the Complete Guide to the Art of Paperfolding. Anness.
    Beggs J S. 1966. Advanced Mechanism. Macmillan.
    Belcastro S, Hull T C. 2002. Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra its Applications, 348: 273-282. doi: 10.1016/S0024-3795(01)00608-5
    Bennett G T. 1903. A new mechanism. Engineering, 76: 777.
    Bricard R. 1927. Leçons de cinématique Tome II Cinématique Appliquée. Paris: Gauthier-Villars.
    Cai J. 2016. Kinematic analysis of foldable plate structures with rolling joints. Journal of Mechanisms and Robotics, 8: 034502. doi: 10.1115/1.4032269
    Cai J, Deng X, Xu Y, Feng J. 2016. Motion analysis of a foldable barrel vault based on regular and irregular Yoshimura origami. Journal of Mechanisms and Robotics, 8: 021017. doi: 10.1115/1.4031658
    Cai J, Deng X, Zhou Y, Feng J, Tu Y. 2015. Bistable behavior of the cylindrical origami structure with Kresling pattern. Journal of Mechanical Design, 137: 061406. doi: 10.1115/1.4030158
    Cai J, Liu Y, Ma R, Feng J, Zhou Y. 2017. Nonrigidly foldability analysis of Kresling cylindrical origami. Journal of Mechanisms and Robotics, 9: 041018. doi: 10.1115/1.4036738
    Cai J, Zhang Q, Feng J, Xu Y. 2019. Modeling and kinematic path selection of retractable kirigami roof structures. Computer-Aided Civil Infrastructure Engineering, 34: 352-363. doi: 10.1111/mice.12418
    Chen X, Feng H, Ma J, Chen Y. 2019a. A plane linkage and its tessellation for deployable structure. Mechanism and Machine Theory, 142: 103605. doi: 10.1016/j.mechmachtheory.2019.103605
    Chen Y, Chai W H. 2011. Bifurcation of a special line and plane symmetric Bricard linkage. Mechanism and Machine Theory, 46: 515-533. doi: 10.1016/j.mechmachtheory.2010.11.015
    Chen Y, Fan L, Bai Y, Feng J, Sareh P. 2020. Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming. Computers and Structures, 239: 106328. doi: 10.1016/j.compstruc.2020.106328
    Chen Y, Feng H, Ma J, Peng R, You Z. 2016. Symmetric waterbomb origami. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 472: 20150846. doi: 10.1098/rspa.2015.0846
    Chen Y, Lv W, Li J, You Z. 2017. An extended family of rigidly foldable origami tubes. Journal of Mechanisms and Robotics, 9: 021002. doi: 10.1115/1.4035559
    Chen Y, Lv W, Peng R, Wei G. 2019b. Mobile assemblies of four-spherical-4R-integrated linkages and the associated four-crease-integrated rigid origami patterns. Mechanism and Machine Theory, 142: 103613. doi: 10.1016/j.mechmachtheory.2019.103613
    Chen Y, Peng R, You Z. 2015. Origami of thick panels. Science, 349: 396-400. doi: 10.1126/science.aab2870
    Chen Y, You Z. 2009. Two-fold symmetrical 6R foldable frame and its bifurcations. International Journal of Solids Structures, 46: 4504-4514. doi: 10.1016/j.ijsolstr.2009.09.012
    Chen Z, Wu T, Nian G, Shan Y, Liang X, Jiang H, Qu S. 2019c. Ron Resch origami pattern inspired energy absorption structures. Journal of Applied Mechanics, 86: 011005. doi: 10.1115/1.4041415
    Chiang C-H. 1988. Kinematics of Spherical Mechanisms. Cambridge University Press.
    Choi G P, Dudte L H, Mahadevan L. 2019. Programming shape using kirigami tessellations. Nature materials, 18: 999-1004. doi: 10.1038/s41563-019-0452-y
    Choi G P, Dudte L H, Mahadevan L. 2021. Compact reconfigurable kirigami. Physical Review Research, 3: 043030. doi: 10.1103/PhysRevResearch.3.043030
    Chu C C, Keong C K. 2017. The review on tessellation origami inspired folded structure//AIP Conference Proceedings, 020025. AIP Publishing LLC.
    Connelly R, Sabitov I, Walz A. 1997. The bellows conjecture. Beitr. Algebra Geom, 38: 1-10.
    Coulais C, Sabbadini A, Vink F, van Hecke M. 2018. Multi-step self-guided pathways for shape-changing metamaterials. Nature Materials, 561: 512-515.
    Dai J S. 2012. Finite displacement screw operators with embedded Chasles’ motion. Journal of Mechanisms and Robotics, 4: 041002. doi: 10.1115/1.4006951
    Dai J S, Rees Jones J. 1999. Mobility in metamorphic mechanisms of foldable/erectable kinds. Journal of Mechanical Design, 121: 375-382. doi: 10.1115/1.2829470
    Davies T. 1981. Kirchhoff's circulation law applied to multi-loop kinematic chains. Mechanism and Machine Theory, 16: 171-183. doi: 10.1016/0094-114X(81)90033-1
    De Temmerman I a N, Mollaert M, Van Mele I a T, De Laet I a L. 2007. Design and analysis of a foldable mobile shelter system. International Journal of Space Structures, 22: 161-168. doi: 10.1260/026635107782218868
    Demaine E D, O'Rourke J. 2007. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press.
    Denavit J, Hartenberg R S. 1955. A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 22: 215-221. doi: 10.1115/1.4011045
    Deng A, Ji B, Zhou X, You Z. 2020. Geometric design and mechanical properties of foldcores based on the generalized Resch patterns. Thin-Walled Structures, 148: 106516. doi: 10.1016/j.tws.2019.106516
    Deng X, Zhao J, Cai J, Liu X. 2022. Tunable origami metamaterial with arbitrary single-curvature configuration. Mechanism and Machine Theory, 171: 104745. doi: 10.1016/j.mechmachtheory.2022.104745
    Edmondson B J, Lang R J, Magleby S P, Howell L L. 2014. An offset panel technique for thick rigidily foldable origami//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT08A054. American Society of Mechanical Engineers.
    Edmondson B J, Lang R J, Morgan M R, Magleby S P, Howell L L. 2015. Thick rigidly foldable structures realized by an offset panel. Origami, 6: 149-161.
    Evans T A, Lang R J, Magleby S P, Howell L L. 2015a. Rigidly foldable origami gadgets and tessellations. Royal Society Open Science, 2: 150067. doi: 10.1098/rsos.150067
    Evans T A, Lang R J, Magleby S P, Howell L L. 2015b. Rigidly foldable origami twists. Origami, 6: 119-130.
    Fang H, Zhang Y, Wang K. 2017. Origami-based earthworm-like locomotion robots. Bioinspiration and Biomimetics, 12: 065003. doi: 10.1088/1748-3190/aa8448
    Farnham J, Hull T C, Rumbolt A. 2022. Rigid folding equations of degree-6 origami vertices. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 478: 20220051. doi: 10.1098/rspa.2022.0051
    Fei L J, Sujan D. 2013. Origami theory and its applications: a literature review. International Journal of Humanities and Social Sciences, 7: 229-233.
    Felton S, Tolley M, Demaine E, Rus D, Wood R. 2014. A method for building self-folding machines. Science, 345: 644-646. doi: 10.1126/science.1252610
    Feng F, Dang X, James R D, Plucinsky P. 2020a. The designs and deformations of rigidly and flat-foldable quadrilateral mesh origami. Journal of the Mechanics Physics of Solids, 142: 104018. doi: 10.1016/j.jmps.2020.104018
    Feng H, Ma J, Chen Y. 2020b. Rigid folding of generalized waterbomb origami tubes. Chinese Journal of Mechanical engineering, 56: 143-159.
    Feng H, Ma J, Chen Y, You Z. 2018a. Twist of tubular mechanical metamaterials based on waterbomb origami. Scientific reports, 8: 1-13.
    Feng H, Peng R, Ma J, Chen Y. 2018b. Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. Journal of Mechanisms and Robotics, 10: 051003. doi: 10.1115/1.4040439
    Feng H, Peng R, Zang S, Ma J, Chen Y. 2020c. Rigid foldability and mountain-valley crease assignments of square-twist origami pattern. Mechanism and Machine Theory, 152: 103947. doi: 10.1016/j.mechmachtheory.2020.103947
    Filipov E, Liu K, Tachi T, Schenk M, Paulino G H. 2017. Bar and hinge models for scalable analysis of origami. International Journal of Solids Structures, 124: 26-45. doi: 10.1016/j.ijsolstr.2017.05.028
    Filipov E T, Tachi T, Paulino G H. 2015. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proceedings of the National Academy of Sciences, 112: 12321-12326. doi: 10.1073/pnas.1509465112
    Fonseca L M, Savi M A. 2021. On the symmetries of the origami waterbomb pattern: kinematics and mechanical investigations. Meccanica, 56: 2575-2598. doi: 10.1007/s11012-021-01388-2
    Gan W, Pellegrino S. 2003. Closed-loop deployable structures//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1450.
    Gan W W, Pellegrino S. 2006. Numerical approach to the kinematic analysis of deployable structures forming a closed loop. Journal of Mechanical Engineering Science, 220: 1045-1056. doi: 10.1243/09544062JMES245
    Georgakopoulos S V, Zekios C L, Sattar-Kaddour A, Hamza M, Biswas A, et al. 2021. Origami antennas. IEEE Open Journal of Antennas Propagation, 2: 1020-1043. doi: 10.1109/OJAP.2021.3121102
    Ghassaei A, Demaine E D, Gershenfeld N. 2018. Fast, interactive origami simulation using GPU computation, Origami, 7: 1151-1166.
    Gillman A, Fuchi K, Buskohl P. 2018. Truss-based nonlinear mechanical analysis for origami structures exhibiting bifurcation and limit point instabilities. International Journal of Solids and Structures, 147: 80-93. doi: 10.1016/j.ijsolstr.2018.05.011
    Gogu G. 2005. Mobility of mechanisms: a critical review. Mechanism and Machine Theory, 40: 1068-1097. doi: 10.1016/j.mechmachtheory.2004.12.014
    Goldman F. 2011. Using the snapology technique to teach convex polyhedra//Fifth International Meeting of Origami Science, Mathematics, and Education, 99-110.
    Grünbaum B, Shephard G C. 1987. Tilings and Patterns. Courier Dover Publications.
    Gu Y, Chen Y. 2020. Origami cubes with one-DOF rigid and flat foldability. International Journal of Solids and Structures, 207: 250-261. doi: 10.1016/j.ijsolstr.2020.09.008
    Gu Y, Chen Y. 2021. One-DOF origami boxes with rigid and flat foldability//IFToMM Asian Conference on Mechanism and Machine Science, 80-88. Springer.
    Gu Y, Wei G, Chen Y. 2021. Thick-panel origami cube. Mechanism and Machine Theory, 164: 104411. doi: 10.1016/j.mechmachtheory.2021.104411
    Guest S, Pellegrino S. 1992. Inextensional wrapping of flat membranes//Proceedings of the First International Seminar on Structural Morphology, Citeseer.
    Guest S, Pellegrino S. 1996a. A new concept for solid surface deployable antennas. Acta Astronautica, 38: 103-113. doi: 10.1016/0094-5765(96)00009-4
    Guest S D, Pellegrino S. 1994a. The folding of triangulated cylinders, part I: geometric considerations, Journal of Applied Mechanics, 61: 773-777.
    Guest S D, Pellegrino S. 1994b. The folding of triangulated cylinders, part II: the folding process, Journal of Applied Mechanics, 61: 778-783.
    Guest S D, Pellegrino S. 1996b. The folding of triangulated cylinders, part III: experiments, Journal of Applied Mechanics, 63: 77-83.
    Hagiwara I. 2008. From origami to “Origamics”. The Japan Journal, 5: 22-25.
    Hamilton W R. 1866. Elements of Quaternions. London: Longmans, Green, & Company.
    Hartenberg R S, Danavit J. 1964. Kinematic Synthesis of Linkages. New York: McGraw-Hill.
    He Z, Guest S D. 2020. On rigid origami II: quadrilateral creased papers. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 476: 20200020. doi: 10.1098/rspa.2020.0020
    Howell L L. 2013. Compliant Mechanisms. McCathy J, eds. 21st Century Kinematics. Springer.
    Howell L L, Olsen B M, Magleby S P. 2013. Handbook of Compliant Mechanisms. John Wiley & Sons Ltd.
    Huang C, Chen C. 1994. The linear representation of the screw triangle: a unification of finite and infinitesimal kinematics//In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 449-458.
    Huang Z, Li Q. 2002. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. The International Journal of Robotics Research, 21: 131-145. doi: 10.1177/027836402760475342
    Huang Z, Li Q. 2003. Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. The International Journal of Robotics Research, 22: 59-79.
    Hull T. 2012. Project Origami: Activities for Exploring Mathematics. CRC Press.
    Hull T C. 2014. Counting mountain-valley assignments for flat folds. arXiv: 1410.5022.
    Hull T C, Tachi T. 2017. Double-line rigid origami//Proceedings of the 11th Asian Forum on Graphic Science, Tokyo.
    Hunt K H. 1978. Kinematic Geometry of Mechanisms. Oxford University Press, USA.
    Iniguez-Rabago A, Li Y, Overvelde J T. 2019. Exploring multistability in prismatic metamaterials through local actuation. Nature Communications, 10: 1-10. doi: 10.1038/s41467-018-07882-8
    Ionescu T G, Antonescu P, Biro I, Bögelsack G, Breteler A K. 2003. Terminology for the mechanism and machine science. Mechanism and Machine Theory, 38: 767-901. doi: 10.1016/S0094-114X(03)00015-6
    Izmestiev I. 2017. Classification of flexible Kokotsakis polyhedra with quadrangular base. International Mathematics Research Notices, 2017: 715-808.
    Jeong D, Lee K. 2018. Design and analysis of an origami-based three-finger manipulator. Robotica, 36: 261-274. doi: 10.1017/S0263574717000340
    Jiao Z, Ji C, Zou J, Yang H, Pan M. 2019a. Vacuum‐powered soft pneumatic twisting actuators to empower new capabilities for soft robots. Advanced Materials Technologies, 4: 1800429. doi: 10.1002/admt.201800429
    Jiao Z, Zhang C, Wang W, Pan M, Yang H, Zou J. 2019b. Advanced artificial muscle for flexible material‐based reconfigurable soft robots. Advanced Science, 6: 1901371. doi: 10.1002/advs.201901371
    Justin J. 1986. Mathematics of origami, part 9. British Origami, 118: 28-30.
    Justin J. 1994. Mathematical remarks about origami bases. Symmetry:Culture Science, 5: 153-165.
    Kawasaki T, Yoshida M. 1988. Crystallographic flat origamis. Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics, 42: 153-157. doi: 10.2206/kyushumfs.42.153
    Kokotsakis A. 1933. Über bewegliche polyeder. Mathematische Annalen, 107: 627-647. doi: 10.1007/BF01448912
    Kresling B. 2002. Folded tubes as compared to kikko (‘tortoise-shell55’) bamboo. Origami, 3: 197-207.
    Kshad M A E, Popinigis C, Naguib H E. 2018. 3D printing of Ron-Resch-like origami cores for compression and impact load damping. Smart Materials Structures, 28: 015027.
    Ku J S, Demaine E D. 2016. Folding flat crease patterns with thick materials. Journal of Mechanisms and Robotics, 8: 031003. doi: 10.1115/1.4031954
    Kuipers J B. 1999. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press.
    Kumar P, Pellegrino S. 2000. Computation of kinematic paths and bifurcation points. International Journal of Solids and Structures, 37: 7003-7027. doi: 10.1016/S0020-7683(99)00327-3
    Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T, Sasaki M. 2006. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials Science Engineering:A, 419: 131-137. doi: 10.1016/j.msea.2005.12.016
    Lam T. 2003. Hamilton's Quaternions. Elsevier.
    Lang R J. 2017. Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami. AK Peters/CRC Press.
    Lang R J, Brown N, Ignaut B, Magleby S, Howell L. 2020. Rigidly foldable thick origami using designed-offset linkages. Journal of Mechanisms and Robotics, 12: 021106.
    Lang R J, Howell L. 2018. Rigidly foldable quadrilateral meshes from angle arrays. Journal of Mechanisms and Robotics, 10: 021004.
    Lang R J, Howell L L. 2022. Laminar emergent flexural fold joints: Planar compliant mechanisms with large-angle near-revolute motion. Extreme Mechanics Letters, 52: 101657. doi: 10.1016/j.eml.2022.101657
    Lang R J, Magleby S, Howell L. 2016. Single degree-of-freedom rigidly foldable cut origami flashers. Journal of Mechanisms and Robotics, 8: 031005. doi: 10.1115/1.4032102
    Lang R J, Nelson T, Magleby S, Howell L. 2017. Thick rigidly foldable origami mechanisms based on synchronized offset rolling contact elements. Journal of Mechanisms and Robotics, 9: 021013. doi: 10.1115/1.4035686
    Lang R J, Tolman K A, Crampton E B, Magleby S P, Howell L L. 2018. A review of thickness-accommodation techniques in origami-inspired engineering. Applied Mechanics Reviews, 70: 010805.
    Lee D-Y, Kim S-R, Kim J-S, Park J-J, Cho K-J. 2017. Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure. Soft robotics, 4: 163-180. doi: 10.1089/soro.2016.0038
    Lee T-U, Yang X, Ma J, Chen Y, Gattas J M. 2019. Elastic buckling shape control of thin-walled cylinder using pre-embedded curved-crease origami patterns. International Journal of Mechanical Sciences, 151: 322-330. doi: 10.1016/j.ijmecsci.2018.11.005
    Li Y. 2020. Motion paths finding for multi-degree-of-freedom mechanisms. International Journal of Mechanical Sciences, 185: 105709. doi: 10.1016/j.ijmecsci.2020.105709
    Li Y, Yin J. 2021. Metamorphosis of three-dimensional kirigami-inspired reconfigurable and reprogrammable architected matter. Materials Today Physics, 21: 100511. doi: 10.1016/j.mtphys.2021.100511
    Li Y, Zhang Q, Hong Y, Yin J. 2021. 3D transformable modular Kirigami based programmable metamaterials. Advanced Functional Materials, 31: 2105641. doi: 10.1002/adfm.202105641
    Lin Y, Yang G, Liang Y, Zhang C, Wang W, Qian D, Yang H, Zou J. 2020. Controllable stiffness origami “skeletons” for lightweight and multifunctional artificial muscles. Advanced Functional Materials, 30: 2000349. doi: 10.1002/adfm.202000349
    Liu K, Paulino G H. 2016. MERLIN: A MATLAB implementation to capture highly nonlinear behavior of non-rigid origami//Proceedings of IASS Annual Symposia, 1-10.
    Liu K, Paulino G H. 2018. Highly efficient nonlinear structural analysis of origami assemblages using the MERLIN2 software, Origami, 7: 1167-1182.
    Liu L, Choi G P, Mahadevan L. 2021a. Wallpaper group kirigami. Proceedings of the Royal Society A:Mathematical, Physical, 477: 20210161.
    Liu P, Ma J, Chen Y, Yuan L, Zhao H, Wang K. 2021b. The kinematic analysis and bistable characteristics of the winding origami structure//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V08BT08A032. American Society of Mechanical Engineers.
    Liu S. 2014. Deployable structure associated with rigid origami and its mechanics. [PhD thesis]. Singapore: School of Mechanical and Aerospace Engineering, Nanyang Technological University.
    Liu S, Lv W, Chen Y, Lu G. 2016. Deployable prismatic structures with rigid origami patterns. Journal of Mechanisms and Robotics, 8: 031002. doi: 10.1115/1.4031953
    Liu W, Jiang H, Chen Y. 2022. 3D programmable metamaterials based on reconfigurable mechanism modules. Advanced Functional Materials, 32: 2109865. doi: 10.1002/adfm.202109865
    Liu Z, Fang H, Xu J, Wang K. 2021c. A novel origami mechanical metamaterial based on Miura-variant designs: exceptional multistability and shape reconfigurability. Smart Materials Structures, 30: 085029. doi: 10.1088/1361-665X/ac0d0f
    Lv C, Krishnaraju D, Konjevod G, Yu H, Jiang H. 2014. Origami based mechanical metamaterials. Scientific Reports, 4: 1-6.
    Ma J, Chai S, Chen Y. 2022a. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures. Mechanics of Materials, 168: 104269. doi: 10.1016/j.mechmat.2022.104269
    Ma J, Feng H, Chen Y, Hou D, You Z. 2020. Folding of tubular waterbomb. Research, 2020: 1735081.
    Ma J, Jiang X, Chen Y. 2022b. A 3D modular meta-structure with continuous mechanism motion and bistability. Extreme Mechanics Letters, 51: 101584. doi: 10.1016/j.eml.2021.101584
    Ma J, Song J, Chen Y. 2018. An origami-inspired structure with graded stiffness. International Journal of Mechanical Sciences, 136: 134-142. doi: 10.1016/j.ijmecsci.2017.12.026
    Ma J, You Z. 2013. Energy absorption of thin-walled beams with a pre-folded origami pattern. Thin-Walled Structures, 73: 198-206. doi: 10.1016/j.tws.2013.08.001
    Ma J, Zang S, Feng H, Chen Y, You Z. 2021. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. International Journal of Mechanical Sciences, 189: 105981. doi: 10.1016/j.ijmecsci.2020.105981
    Magliozzi L, Micheletti A, Pizzigoni A, Ruscica G. 2017. On the design of origami structures with a continuum of equilibrium shapes. Composites Part B:Engineering, 115: 144-150. doi: 10.1016/j.compositesb.2016.10.023
    Maxwell J C. 1864. On the calculation of the equilibrium and stiffness of frames. The London, Edinburgh, Dublin Philosophical Magazine, 27: 294-299. doi: 10.1080/14786446408643668
    Mazzucchi A. 2018. A kinetic module for modular structures based on rigid origami. Nexus Network Journal, 20: 41-57. doi: 10.1007/s00004-017-0351-y
    McCarthy J M. 1990. Introduction to theoretical kinematics. MIT Press.
    Meloni M, Cai J, Zhang Q, Sang‐Hoon Lee D, Li M, Ma R, Parashkevov T E, Feng J. 2021. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Advanced Science, 8: 2000636. doi: 10.1002/advs.202000636
    Micheletti A, Giannetti I, Mattei G, Tiero A. 2022. Kinematic and static design of rigid origami structures: Application to modular yoshimura patterns. Journal of Architectural Engineering, 28: 04022009. doi: 10.1061/(ASCE)AE.1943-5568.0000531
    Mitani J. 2017. 3D Origami Art. CRC Press.
    Miura K. 1985. Method of packaging and deployment of large membranes in space. The Institute of Space Astronautical Science report: 1-9.
    Miura K, Tachi T. 2010. Synthesis of rigid-foldable cylindrical polyhedra. Symmetry: Art Science, 1: 204-213.
    Miyashita S, Guitron S, Yoshida K, Li S, Damian D D, Rus D. 2016. Ingestible, controllable, and degradable origami robot for patching stomach wounds//2016 IEEE International Conference on Robotics and Automation (ICRA), 909-916.IEEE.
    Morgan M R, Lang R J, Magleby S P, Howell L L. 2016. Towards developing product applications of thick origami using the offset panel technique. Mechanical Sciences, 7: 69-77. doi: 10.5194/ms-7-69-2016
    Mousanezhad D, Kamrava S, Vaziri A. 2017. Origami-based building blocks for modular construction of foldable structures. Scientific Reports, 7: 1-8. doi: 10.1038/s41598-016-0028-x
    Mukhopadhyay T, Ma J, Feng H, Hou D, Gattas J M, Chen Y, You Z. 2020. Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature. Applied Materials Today, 19: 100537. doi: 10.1016/j.apmt.2019.100537
    Myard F E. 1931. Contribution à la géométrie des systèmes articulés. Bulletin de la Société Mathématique de France, 59: 183-210.
    Novelino L S, Ze Q, Wu S, Paulino G H, Zhao R. 2020. Untethered control of functional origami microrobots with distributed actuation. Proceedings of the National Academy of Sciences, 117: 24096-24101. doi: 10.1073/pnas.2013292117
    Onal C D, Wood R J, Rus D. 2012. An origami-inspired approach to worm robots. IEEE/ASME Transactions on Mechatronics, 18: 430-438.
    Ou J, Ma Z, Peters J, Dai S, Vlavianos N, Ishii H. 2018. KinetiX-designing auxetic-inspired deformable material structures. Computers Graphics, 75: 72-81. doi: 10.1016/j.cag.2018.06.003
    Overvelde J T, De Jong T A, Shevchenko Y, Becerra S A, Whitesides G M, Weaver J C, Hoberman C, Bertoldi K. 2016. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nature Communications, 7: 1-8.
    Overvelde J T, Weaver J C, Hoberman C, Bertoldi K. 2017. Rational design of reconfigurable prismatic architected materials. Nature Communications, 541: 347-352. doi: 10.1038/nature20824
    Pehrson N A, Magleby S P, Lang R J, Howell L L. 2016. Introduction of monolithic origami with thick-sheet materials//Proceedings of IASS Annual Symposia, 1-10.
    Pellegrino S. 1990. Analysis of prestressed mechanisms. International Journal of Solids and Structures, 26: 1329-1350. doi: 10.1016/0020-7683(90)90082-7
    Pellegrino S. 1993. Structural computations with the singular value decomposition of the equilibrium matrix. International Journal of Solids and Structures, 30: 3025-3035. doi: 10.1016/0020-7683(93)90210-X
    Pellegrino S, Calladine C R. 1986. Matrix analysis of statically and kinematically indeterminate frameworks. International Journal of Solids and Structures, 22: 409-428. doi: 10.1016/0020-7683(86)90014-4
    Peng R, Chen Y. 2014. The metamaterial generated from rigid-origami pattern//The 6th International Meeting on Origami in Science, Mathematics and Education, Tokyo, Japan, August.
    Peng R, Ma J, Chen Y. 2018. The effect of mountain-valley folds on the rigid foldability of double corrugated pattern. Mechanism and Machine Theory, 128: 461-474. doi: 10.1016/j.mechmachtheory.2018.06.012
    Pratapa P P, Liu K, Paulino G H. 2019. Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment. Physical Review Letters, 122: 155501. doi: 10.1103/PhysRevLett.122.155501
    Pratapa P P, Liu K, Paulino G H. 2020. Kinematics of the morph origami pattern and its hybrid states//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V010T010A076. American Society of Mechanical Engineers.
    Pratapa P P, Liu K, Vasudevan S P, Paulino G H. 2021. Reprogrammable kinematic branches in tessellated origami structures. Journal of Mechanisms and Robotics, 13: 031004. doi: 10.1115/1.4049949
    Qiu C, Zhang K, Dai J S. 2016. Repelling-screw based force analysis of origami mechanisms. Journal of Mechanisms and Robotics, 8: 031001. doi: 10.1115/1.4031458
    Rafsanjani A, Pasini D. 2016. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 9: 291-296. doi: 10.1016/j.eml.2016.09.001
    Randlett S. 1963. The Art of Origami: Paper Folding, Traditional and Modern. Faber & Faber.
    Resch R D. 1965. Geometrical device having articulated relatively movable sections. U.S. Patent 3201894.
    Resch R D. 1968. Self-supporting structural unit having a series of repetitious geometrical modules. U.S. Patent 3407558.
    Resch R D. 1973. The topological design of sculptural and architectural systems//Proceedings of the June 4-8, 1973, National Computer Conference and Exposition, 643-650.
    Reuleaux F. 1875. The Kinematics of Machinery. London. Macmillan and Co.
    Salazar R, Murthy S, Pellazar C, Stoica A. 2017. Transformers for lunar extreme environments: large origami deployable solar reflectors//2017 IEEE Aerospace Conference, 1-7.IEEE.
    Sarrus P. 1853. Note Sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires, et reciproquement, comptes. rendus. Acad. Sci. , Paris, 36: 1036.
    Schenk M, Guest S D. 2011. Origami folding: a structural engineering approach. Origami, 5: 291-304.
    Schenk M, Guest S D. 2013. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 110: 3276-3281. doi: 10.1073/pnas.1217998110
    Song C, Chen Y. 2012. Multiple linkage forms and bifurcation behaviours of the double-subtractive-Goldberg 6R linkage. Mechanism and Machine Theory, 57: 95-110. doi: 10.1016/j.mechmachtheory.2012.07.002
    Stachel H. 2010. A kinematic approach to Kokotsakis meshes. Computer Aided Geometric Design, 27: 428-437. doi: 10.1016/j.cagd.2010.05.002
    Stavric M, Wiltsche A. 2014. Quadrilateral patterns for rigid folding structures. International Journal of Architectural Computing, 12: 61-79. doi: 10.1260/1478-0771.12.1.61
    Sun T, Yang S, Huang T, Dai J S. 2017. A way of relating instantaneous and finite screws based on the screw triangle product. Mechanism and Machine Theory, 108: 75-82.
    Tachi T. 2009. Generalization of rigid-foldable quadrilateral-mesh origami. Journal of the International Association for Shell Spatial Structures, 50: 173-179.
    Tachi T. 2010a. “Freeform Origami”. www.tsg.ne.jp/TT/software/.
    Tachi T. 2010b. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. Advances in Architectural Geometry, 14: 203-215.
    Tachi T. 2010c. Geometric considerations for the design of rigid origami structures//Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, 458-460. Elsevier Ltd.
    Tachi T. 2010d. One-DOF cylindrical deployable structures with rigid quadrilateral panels//Symposium of the International Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings. Editorial Universitat Politècnica de València.
    Tachi T. 2011. Rigid-foldable thick origami. Origami, 5: 253-264.
    Tachi T. 2013. Designing freeform origami tessellations by generalizing Resch's patterns. Journal of Mechanical Design, 135: 111006. doi: 10.1115/1.4025389
    Tachi T, Masubuchi M, Iwamoto M. 2012. Rigid origami structures with vacuumatics: geometric considerations//Proc. the IASS-APCS Seoul, Korea, 21–24 May.
    Tang J, Tian M, Wang C, Wang X, Mao H. 2021. A novel scheme of folding discretized surfaces of revolution inspired by waterbomb origami. Mechanism and Machine Theory, 165: 104431. doi: 10.1016/j.mechmachtheory.2021.104431
    Tang Y, Li Y, Hong Y, Yang S, Yin J. 2019. Programmable active kirigami metasheets with more freedom of actuation. Proceedings of the National Academy of Sciences, 116: 26407-26413. doi: 10.1073/pnas.1906435116
    Tarnai T. 2001. Infinitesimal and finite mechanisms. //Pellegrinos eds. Deployable Structures. New York: Springer, 2001.
    Tolman K A, Lang R J, Magleby S P, Howell L L. 2017. Split-vertex technique for thickness-accommodation in origami-based mechanisms//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT08A054. American Society of Mechanical Engineers.
    Turner N, Goodwine B, Sen M. 2016. A review of origami applications in mechanical engineering. Journal of Mechanical Engineering Science, 230: 2345-2362. doi: 10.1177/0954406215597713
    Varadarajan V. 1974. Lie GRoups, Lie Algebras, and Their Representations. Prentice-Hall.
    Vasudevan S P, Pratapa P P. 2021. Origami metamaterials with near-constant poisson functions over finite strains. Journal of Engineering Mechanics, 147: 04021093.
    Wang C, Guo H, Liu R, Deng Z. 2022a. A programmable origami-inspired space deployable structure with curved surfaces. Engineering Structures, 256: 113934. doi: 10.1016/j.engstruct.2022.113934
    Wang C, Li J, Zhang D. 2021. Optimization design method for kirigami-inspired space deployable structures with cylindrical surfaces. Applied Mathematical Modelling, 89: 1575-1598. doi: 10.1016/j.apm.2020.07.005
    Wang K, Chen Y. 2011. Folding a patterned cylinder by rigid origami, Origami, 5: 265-276.
    Wang L-C, Song W-L, Fang D. 2018. Twistable origami and kirigami: from structure-guided smartness to mechanical energy storage. ACS Applied Materials and Interfaces, 11: 3450-3458.
    Wang L C, Song W L, Zhang Y J, Qu M J, Zhao Z, Chen M, Yang Y, Chen H, Fang D. 2020. Active reconfigurable tristable square‐twist origami. Advanced Functional Materials, 30: 1909087. doi: 10.1002/adfm.201909087
    Wang S, Gao Y, Huang H, Li B, Guo H, Liu R. 2022b. Design of deployable curved-surface rigid origami flashers. Mechanism and Machine Theory, 167: 104512. doi: 10.1016/j.mechmachtheory.2021.104512
    Warisaya K, Hamanaka H, Tokolo A, Tachi T. 2021. Auxetic structures based on rhombic tiling//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V08BT08A031. American Society of Mechanical Engineers.
    Watanabe N, Kawaguchi K. 2009. The method for judging rigid foldability. Origami, 4: 165-174.
    Webb D, Hirsch B, Bach V, Sauder J F, Bradford S, Thomson M. 2016. Starshade mechanical architecture & technology effort//3rd AIAA Spacecraft Structures Conference, 2165.
    Wei G, Dai J S. 2014. Origami-inspired integrated planar-spherical overconstrained mechanisms. Journal of Mechanical Design, 136: 051003. doi: 10.1115/1.4025821
    Wei G, Ding X, Dai J S. 2010. Mobility and geometric analysis of the Hoberman switch-pitch ball and its variant. Journal of Mechanisms and Robotics, 2: 031010. doi: 10.1115/1.4001730
    Wohlhart K. 2001. Regular polyhedral linkages//Proceedings of the 2nd Workshop on Computational Kinematics, Seoul: 239-248.
    Wu W, You Z. 2010. Modelling rigid origami with quaternions and dual quaternions. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 466: 2155-2174. doi: 10.1098/rspa.2009.0625
    Wu W, You Z. 2011. A solution for folding rigid tall shopping bags. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 467: 2561-2574. doi: 10.1098/rspa.2011.0120
    Xu R, Zhang X, Ma J, Chen Y, Cao Y, You Z. 2018. Folding a rigid flat surface around a square hub//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT07A060. American Society of Mechanical Engineers.
    Yamaguchi K, Yasuda H, Tsujikawa K, Kunimine T, Yang J. 2022. Graph-theoretic estimation of reconfigurability in origami-based metamaterials. Materials and Design, 213: 110343. doi: 10.1016/j.matdes.2021.110343
    Yang F, Chen Y, Kang R, Ma J. 2016a. Truss transformation method to obtain the non-overconstrained forms of 3D overconstrained linkages. Mechanism and Machine Theory, 102: 149-166. doi: 10.1016/j.mechmachtheory.2016.04.005
    Yang F, Zhang M, Ma J, You Z, Yu Y, Chen Y, Paulino G H. 2022a. Design of single degree-of-freedom triangular resch patterns with thick-panel origami. Mechanism and Machine Theory, 169: 104650. doi: 10.1016/j.mechmachtheory.2021.104650
    Yang J, Zhang X, Chen Y, You Z. 2022b. Folding arrays of uniform-thickness panels to compact bundles with a single degree of freedom. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 478: 20220043. doi: 10.1098/rspa.2022.0043
    Yang S, Sun T, Huang T, Li Q, Gu D. 2016b. A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mechanism and Machine Theory, 104: 405-419.
    Yang Y, Maiolino P, Chen Y, You Z. 2021. Three-dimensional kinematic metamaterial with tuneable directional permeability, arXiv preprint arXiv: 2102.08821.
    Yang Y, You Z. 2018a. 3D construction of a tilted cuboid mechanical metamaterial//ASME International Mechanical Engineering Congress and Exposition, V009T012A021. American Society of Mechanical Engineers.
    Yang Y, You Z. 2018b. Geometry of transformable metamaterials inspired by modular origami. Journal of Mechanisms and Robotics, 10: 021001. doi: 10.1115/1.4038969
    Yang Y, You Z. 2018c. A modular origami-inspired mechanical metamaterial. Origami, 7: 715-730.
    Yasuda H, Miyazawa Y, Charalampidis E G, Chong C, Kevrekidis P G, Yang J. 2019. Origami-based impact mitigation via rarefaction solitary wave creation. Science advances, 5: eaau2835. doi: 10.1126/sciadv.aau2835
    Yasuda H, Tachi T, Lee M, Yang J. 2017. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nature Communications, 8.
    Yasuda H, Yein T, Tachi T, Miura K, Taya M. 2013. Folding behaviour of Tachi–Miura polyhedron bellows. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 469: 20130351. doi: 10.1098/rspa.2013.0351
    Ye H, Ma J, Zhou X, Wang H, You Z. 2019. Energy absorption behaviors of pre-folded composite tubes with the full-diamond origami patterns. Composite Structures, 221: 110904. doi: 10.1016/j.compstruct.2019.110904
    Ye H, Zhou X, Ma J, Wang H, You Z. 2020. Axial crushing behaviors of composite pre-folded tubes made of KFRP/CFRP hybrid laminates. Thin-Walled Structures, 149: 106649. doi: 10.1016/j.tws.2020.106649
    Yellowhorse A, Lang R J, Tolman K, Howell L L. 2018. Creating linkage permutations to prevent self-intersection and enable deployable networks of thick-origami. Scientific Reports, 8: 1-9.
    Yellowhorse A D, Brown N, Howell L L. 2020. Design of regular one-dimensional, two-dimensional, and three-dimensional linkage-based tessellations. Journal of Mechanisms and Robotics, 12: 021104. doi: 10.1115/1.4045936
    Yoshimura Y. 1955. On the mechanism of buckling of a circular cylindrical shell under axial compression//National Advisory Committee for Aeronautics Technical Memorandum.
    You Z, Chen Y. 2011. Motion Structures: Deployable Structural Assemblies of Mechanisms. Crc Press.
    Yu Y, Chen Y, Paulino G H. 2019. On the unfolding process of triangular Resch patterns: a finite particle method investigation//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT07A048. American Society of Mechanical Engineers.
    Zang S, Ma J, You Z, Chen Y. 2022. Deformation characteristics and mechanical properties tuning of a non-rigid square-twist origami structure with rotational symmetry. Thin-Walled Structures, 179: 109570. doi: 10.1016/j.tws.2022.109570
    Zhai Z, Wang Y, Jiang H. 2018. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proceedings of the National Academy of Sciences, 115: 2032-2037. doi: 10.1073/pnas.1720171115
    Zhakypov Z, Paik J. 2018. Design methodology for constructing multimaterial origami robots and machines. IEEE Transactions on Robotics, 34: 151-165. doi: 10.1109/TRO.2017.2775655
    Zhang K, Dai J S. 2013. Classification of origami-enabled foldable linkages and emerging applications//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V06BT07A024. American Society of Mechanical Engineers.
    Zhang K, Fang Y, Fang H, Dai J S. 2010. Geometry and constraint analysis of the three-spherical kinematic chain based parallel mechanism. Journal of Mechanisms and Robotics, 2: 191-200.
    Zhang T, Kawaguchi K i, Wu M. 2018. A folding analysis method for origami based on the frame with kinematic indeterminacy. International Journal of Mechanical Sciences, 146: 234-248.
    Zhang X, Chen Y. 2018a. The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mechanism and Machine Theory, 130: 585-604. doi: 10.1016/j.mechmachtheory.2018.09.005
    Zhang X, Chen Y. 2018b. Mobile assemblies of Bennett linkages from four-crease origami patterns. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 474: 20170621. doi: 10.1098/rspa.2017.0621
    Zhang X, Chen Y. 2019. Vertex-splitting on a diamond origami pattern. Journal of Mechanisms and Robotics, 11: 031014. doi: 10.1115/1.4043214
    Zhang X, Ma J, Li M, You Z, Wang X, Luo Y, Ma K, Chen Y. 2022. Kirigami-based metastructures with programmable multistability. Proceedings of the National Academy of Sciences, 119: e2117649119. doi: 10.1073/pnas.2117649119
    Zhao Y, Endo Y, Kanamori Y, Mitani J. 2018a. Approximating 3D surfaces using generalized waterbomb tessellations. Journal of Computational Design Engineering, 5: 442-448. doi: 10.1016/j.jcde.2018.01.002
    Zhao Y, Kanamori Y, Mitani J. 2018b. Design and motion analysis of axisymmetric 3D origami with generic six-crease bases. Computer Aided Geometric Design, 59: 86-97. doi: 10.1016/j.cagd.2017.10.002
    Zhao Y, Li S, Zhang M, Zeng L, Yang Y, Kanamori Y, Mitani J. 2021. Computational design methods for cylindrical and axisymmetric waterbomb tessellations. Computer Aided Geometric Design, 91: 102037. doi: 10.1016/j.cagd.2021.102037
    Zhou C, Wang B, Ma J, You Z. 2016. Dynamic axial crushing of origami crash boxes. International Journal of Mechanical Sciences, 118: 1-12. doi: 10.1016/j.ijmecsci.2016.09.001
    Zimmermann L, Shea K, Stanković T. 2020. Conditions for rigid and flat foldability of degree-n vertices in origami. Journal of Mechanisms and Robotics, 12: 011020. doi: 10.1115/1.4045249
    Zimmermann L, Stanković T. 2020. Rigid and flat foldability of a degree-four vertex in origami. Journal of Mechanisms and Robotics, 12: 011004. doi: 10.1115/1.4044737
    Zirbel S A, Lang R J, Thomson M W, Sigel D A, Walkemeyer P E, Trease B P, Magleby S P, Howell L L. 2013. Accommodating thickness in origami-based deployable arrays. Journal of Mechanical Design, 135: 111005. doi: 10.1115/1.4025372
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(1)

    Article Metrics

    Article views (3753) PDF downloads(1320) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map