Citation: | Sun X T, Qian J W, Qi Z F, Xu J. Review on research progress of nonlinear vibration isolation and time-delayed suppression method.AdvancesinMechanics, 2023, 53(2): 308-356doi:10.6052/1000-0992-22-048 |
[1] |
蔡国平, 陈龙祥. 2013. 时滞反馈控制的若干问题. 力学进展,
43: 21-28 (Cai G P, Chen L X. 2013. Some problems of delayed feedback control.
Advances in Mechanics,
43: 21-28).
doi:10.6052/1000-0992-12-014
Cai G P, Chen L X. 2013. Some problems of delayed feedback control.
Advances in Mechanics,
43: 21-28).
doi:10.6052/1000-0992-12-014
|
[2] |
柴凯, 朱石坚, 杨庆超, 等. 2018. 三磁体型隔振器的性能分析和实验研究. 振动与冲击,
37: 6 (Chai K, Zhu S J, Yang Q C, et al. 2018. Analysis and test for the performances of a tri-magnet vibration isolator.
Journal of Vibration and Shock,
37: 6).
doi:10.13465/j.cnki.jvs.2018.06.006
Chai K, Zhu S J, Yang Q C, et al. 2018. Analysis and test for the performances of a tri-magnet vibration isolator.
Journal of Vibration and Shock,
37: 6).
doi:10.13465/j.cnki.jvs.2018.06.006
|
[3] |
陈关荣, 汪小帆. 2006. 动力系统的混沌化: 理论方法与应用. 上海: 上海交通大学出版社(Chen G R, Wang X F. 2006. Chaos of dynamical systems: Theoretical methods and applications. Shanghai: Shanghai Jiao Tong University Press).
|
[4] |
陈然. 2019. 一种正交菱形准零刚度隔振器的设计与分析. 山东农业大学学报(自然科学版),
50: 837-841 (Chen R. 2019. The design and analysis of a vibration isolator with orthogonal diamond quasi zero stiffness.
Journal of Shandong Agricultural University(
Natural Science Edition)
Chen R. 2019. The design and analysis of a vibration isolator with orthogonal diamond quasi zero stiffness.
Journal of Shandong Agricultural University (Natural Science Edition),
50: 837-841).
|
[5] |
城市区域环境振动标准. 1989. GB10070-1988. 中国标准出版社(Environmental vibration standards for urban areas. 1989. GB10070-1988. Standards Press of China).
|
[6] |
韩俊淑, 孙景工, 孟令帅. 2019. 一种曲面−弹簧−滚子机构的非线性隔振器特性分析. 振动与冲击,
38: 9 (Han J S, Sun J G, Meng L S. 2019. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element.
Journal of Vibration and Shock,
38: 9).
Han J S, Sun J G, Meng L S. 2019. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element.
Journal of Vibration and Shock,
38: 9).
|
[7] |
胡海岩, 王在华. 2010. 论迟滞与时滞. 力学学报,
42: 740-746 (Hu H Y, Wang Z H. 2010. On hysteresis and retardation.
Chinese Journal of Theoretical and Applied Mechanics,
42: 740-746).
doi:10.6052/0459-1879-2010-4-lxxb2009-414
Hu H Y, Wang Z H. 2010. On hysteresis and retardation.
Chinese Journal of Theoretical and Applied Mechanics,
42: 740-746).
doi:10.6052/0459-1879-2010-4-lxxb2009-414
|
[8] |
刘永强. 2011. 基于磁流变阻尼器的高速动车组半主动控制与时滞分析. 北京交通大学(Liu Y Q. 2011. Semi-active control of high-speed EMUs and time delay analysis based on magnetorheological damper. Beijing Jiaotong University).
|
[9] |
陆泽琦, 陈立群. 2017. 非线性被动隔振的若干进展. 力学学报,
49: 550-564 (Lu Z Q, Chen L Q. 2017. Some recent progresses in nonlinear passive isolations of vibrations.
Chinese Journal of Theoretical and Applied Mechanics,
49: 550-564).
doi:10.6052/0459-1879-17-064
(Lu Z Q, Chen L Q. 2017. Some recent progresses in nonlinear passive isolations of vibrations.
Chinese Journal of Theoretical and Applied Mechanics,
49: 550-564).
doi:10.6052/0459-1879-17-064
|
[10] |
孟光, 董瑶海, 周徐斌, 等. 2019. 风云四号卫星微振动抑制和试验技术研究. 中国科学: 物理学力学天文学,
49: 024508 (Meng G, Dong Y H, Zhou X B, et al. 2019. Research on micro-vibration control and testing of FY-4 meteorological satellite.
Scientia Sinica(
Physica, Mechanica and Astronomica)
Meng G, Dong Y H, Zhou X B, et al. 2019. Research on micro-vibration control and testing of FY-4 meteorological satellite.
Scientia Sinica(Physica, Mechanica and Astronomica),
49: 024508).
doi:10.1360/SSPMA2018-00108
|
[11] |
彭献, 黎大志, 陈树年. 1997. 准零刚度隔振器及其弹性特性设计. 振动,
17: 3 (Peng X, Li D Z, Chen S N. 1997. Quasi-zero stiffness vibration isolators and design for their elastic characteristics.
Journal of Vibration, Measurement & Diagnosis,
17: 3).
Peng X, Li D Z, Chen S N. 1997. Quasi-zero stiffness vibration isolators and design for their elastic characteristics.
Journal of Vibration, Measurement & Diagnosis,
17: 3).
|
[12] |
任晨辉, 杨德庆. 2018. 船用新型多层负刚度冲击隔振器性能分析. 振动与冲击,
37: 81-87 (Ren C H, Yang D Q. 2018. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure.
Journal of Vibration and Shock,
37: 81-87).
Ren C H, Yang D Q. 2018. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure.
Journal of Vibration and Shock,
37: 81-87).
|
[13] |
邵栋, 陆泽琦, 陈立群. 2017. 非线性刚度非线性阻尼隔振系统功率流研究. 振动工程学报,
30: 764-773(Shao D, Lu Z Q, Chen L Q. 2017. Power flow characteristics of a two-stage nonlinear vibration isolation system.
Journal of Vibration Engineering,
30: 764-772).
|
[14] |
束立红, 胡宗成, 吕志强. 2006. 国外舰船隔振器研究进展. 舰船科学技术,
28: 109-112 (Shu L H, Hu Z C, Lv Z Q. 2006. Overseas research progress on vibration isolator.
Ship Science and Technology,
28: 109-112).
Shu L H, Hu Z C, Lv Z Q. 2006. Overseas research progress on vibration isolator.
Ship Science and Technology,
28: 109-112).
|
[15] |
孙秀婷, 富展展. 2018. 一类新型多方向准零刚度隔振平台. 力学季刊,
39: 9 (Sun X T, Fu Z Z. 2018. A novel multi-direction quasi-zero-stiffness vibration isolation platform.
Chinese Quarterly of Mechanics,
39: 9).
doi:10.15959/j.cnki.0254-0053.2018.02.003
Sun X T, Fu Z Z. 2018. A novel multi-direction quasi-zero-stiffness vibration isolation platform.
Chinese Quarterly of Mechanics,
39: 9).
doi:10.15959/j.cnki.0254-0053.2018.02.003
|
[16] |
王毅, 徐道临, 周加喜. 2015. 滚球型准零刚度隔振器的特性分析. 振动与冲击,
34: 6 (Wang Y, Xu D L, Zhou J X. 2015. Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness.
Journal of Vibration and Shock,
34: 6).
doi:10.13465/j.cnki.jvs.2015.04.024
Wang Y, Xu D L, Zhou J X. 2015. Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness,
Journal of Vibration and Shock,
34: 6).
doi:10.13465/j.cnki.jvs.2015.04.024
|
[17] |
王哲, 杜嘉峰, 张传伟, 等. 2016. 车辆电动静液压作动器的半主动悬架时滞补偿控制. 中国机械工程,
27: 2111-2117 (Wang Z, Du J F, Zhang C W, et al. 2016. Time delay compensation control of semi-active suspension with vehicle electro-hydrostatic actuator.
China Mechanical Engineering,
27: 2111-2117).
doi:10.3969/j.issn.1004-132X.2016.15.022
Wang Z, Du J F, Zhang C W, et al. 2016. Time delay compensation control of semi-active suspension with vehicle electro-hydrostatic actuator.
China Mechanical Engineering,
27: 2111-2117).
doi:10.3969/j.issn.1004-132X.2016.15.022
|
[18] |
徐道临, 张月英, 周加喜, 等. 2014. 一种准零刚度隔振器的特性分析与实验研究. 振动与冲击,
33: 208-213 (Xu D L, Zhang Y Y, Zhou J X, et al. 2014. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness.
Journal of Vibration and Shock,
33: 208-213).
doi:10.13465/j.cnki.jvs.2014.11.036
Xu D L, Zhang Y Y, Zhou J X, et al. 2014. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness.
Journal of Vibration and Shock,
33: 208-213).
doi:10.13465/j.cnki.jvs.2014.11.036
|
[19] |
徐鉴, 裴利军. 2006. 时滞系统动力学近期研究进展与展望. 力学进展,
36: 17-30 (Xu J. Pei L J. 2006. Advances in dynamics for delayed systems.
Advances in Mechanics,
36: 17-30).
doi:10.6052/1000-0992-2006-1-J2005-095
Xu J. Pei L J. 2006. Advances in dynamics for delayed systems.
Advances in Mechanics,
36: 17-30).
doi:10.6052/1000-0992-2006-1-J2005-095
|
[20] |
徐鉴. 2015. 振动控制研究进展综述. 力学季刊,
36: 547-565 (Xu J. 2015. Advances of research on vibration control.
Chinese Quarterly of Mechanics,
36: 547-565).
doi:10.15959/j.cnki.0254-0053.2015.04.001
Xu J. 2015. Advances of research on vibration control.
Chinese Quarterly of Mechanics,
36: 547-565).
doi:10.15959/j.cnki.0254-0053.2015.04.001
|
[21] |
徐龙河, 周云, 等. 2001. MRFD半主动控制系统的时滞与补偿. 地震工程与工程振动,
3: 127-131 (Xu L H, Zhou Y, et al. 2001. Time-delay and compensation for MRFD semi-active control system.
Earthquake Engineering and Engineering Dynamics,
3: 127-131).
doi:10.3969/j.issn.1000-1301.2001.03.023
Xu L H, Zhou Y, et al. 2001. Time-delay and compensation for MRFD semi-active control system.
Earthquake Engineering and Engineering Dynamics,
3: 127-131).
doi:10.3969/j.issn.1000-1301.2001.03.023
|
[22] |
徐平. 2014. 蜂窝状空腔屏障隔振效果分析. 振动与冲击,
33: 5 (Xu P. 2014. Analysis of vibration isolation effects of honeycomb-cell barriers.
Journal of Vibration and Shock,
33: 5).
doi:10.3969/j.issn.1000-3835.2014.03.003
Xu P. 2014. Analysis of vibration isolation effects of honeycomb-cell barriers.
Journal of Vibration and Shock,
33: 5).
doi:10.3969/j.issn.1000-3835.2014.03.003
|
[23] |
姚国, 于永恒, 张义民, 等. 2020. X型准零刚度隔振器的隔振特性分析. 东北大学学报: 自然科学版,
41: 5 (Yao G, Yu Y H, Zhang Y M, et al. 2020. Vibration isolation characteristics analysis of x-shaped quasi-zero stiffness vibration isolator.
Journal of Northeastern University(
Natural Science)
Yao G, Yu Y H, Zhang Y M, et al. 2020. Vibration isolation characteristics analysis of x-shaped quasi-zero stiffness vibration isolator.
Journal of Northeastern University(Natural Science),
41: 5).
|
[24] |
张也, 薛松领, 常军. 2018. 基于负刚度的减振设备参数优化及其应用. 地震工程与工程振动,
38: 201-209 (Zhang Y, Xue S L, Chang J. 2018. Parameter optimization and application of vibration damping device based on negative stiffness.
Earthquake Engineering and Engineering Dynamics,
38: 201-209).
doi:10.13197/j.eeev.2018.02.201.zhangy.023
Zhang Y, Xue S L, Chang J. 2018. Parameter optimization and application of vibration damping device based on negative stiffness.
Earthquake Engineering and Engineering Dynamics,
38: 201-209).
doi:10.13197/j.eeev.2018.02.201.zhangy.023
|
[25] |
中国工程院全球工程前沿项目组. 2021. 全球工程前沿2021. 高等教育出版社(Chinese Academy of Engineering Global Engineering Frontier Project Team. 2021. Global Engineering Frontiers 2021. Higher Education Press).
|
[26] |
周加喜, 王心龙, 徐道临, 等. 2015. 含凸轮−滚轮机构的准零刚度系统隔振特性实验研究. 振动工程学报,
28: 7 (Zhou J X, Wang X L, Xu D L, et al. 2015. Experimental study on vibration isolation characteristics of the quasi-zero stiffness isolator with cam-roller mechanism.
Journal of Vibration Engineering,
28: 7).
Zhou J X, Wang X L, Xu D L, et al. 2015. Experimental study on vibration isolation characteristics of the quasi-zero stiffness isolator with cam-roller mechanism.
Journal of Vibration Engineering,
28: 7).
|
[27] |
Abbasi A, Khadem S E, Bab S. 2021. Applications of adaptive stiffness suspensions to vibration control of a high-speed stiff rotor with tilting pad bearings.
Archive of Applied Mechanics,
91: 1819-1835.
doi:10.1007/s00419-020-01856-3
|
[28] |
Abbasi A, Khadem S E, Bab S. 2018. Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators.
Journal of vibration and control,
24: 760-783.
doi:10.1177/1077546316651559
|
[29] |
Alhazza K A, Majeed M A. 2012. Free vibrations control of a cantilever beam using combined time delay feedback.
Journal of Vibration and Control,
18: 609-621.
doi:10.1177/1077546311405700
|
[30] |
Bouna H S, Nbendjo B R N, Woafo P. 2020. Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation.
Nonlinear Dynamics,
100: 1125-1141.
doi:10.1007/s11071-020-05580-z
|
[31] |
Cai G P, Chen L X. 2010. Delayed feedback control experiments on some flexible structures.
Acta Mechanica Sinica,
6: 951-965.
|
[32] |
Carrella A, Brennan M J, Waters T P, et al. 2008. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets.
Journal of Sound and Vibration,
315: 712-720.
doi:10.1016/j.jsv.2008.01.046
|
[33] |
Carrella A, Brennan M J, Waters T P. 2007. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic.
Journal of Sound and Vibration,
301: 678-689.
doi:10.1016/j.jsv.2006.10.011
|
[34] |
Chang P H, Han D K, Shin Y H, et al. 2010. Effective suppression of pneumatic vibration isolators by using input-output linearization and time delay control.
Journal of Sound and Vibration,
329: 1636-1652.
doi:10.1016/j.jsv.2009.12.003
|
[35] |
Chatterjee S. 2008. Vibration control by recursive time-delayed acceleration feedback.
Journal of Sound and Vibration,
317: 67-90.
doi:10.1016/j.jsv.2008.03.020
|
[36] |
Chen T F, Zheng Y X, Song L H, et al. 2022. Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features.
Nonlinear Dynamics, Online.
|
[37] |
Chen Y, Wen H, Jin D. 2021. Design of a Quasi-Zero Stiffness System Based on Electromagnetic Vibration Isolation. In: Oberst, S. , Halkon, B. , Ji, J. , Brown, T. (eds) Vibration Engineering for a Sustainable Future. Springer.
|
[38] |
Cheng C, Li S M, Wang Y, et al. 2016. On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback.
Journal of Sound and Vibration,
378: 76-91.
doi:10.1016/j.jsv.2016.05.029
|
[39] |
Cheng C, Li S M, Wang Y, et al. 2017. Performance analysis of high-static-low-dynamic stiffness vibration isolator with time-delayed displacement feedback.
Journal of Central South University,
24: 2294-2305.
doi:10.1007/s11771-017-3641-3
|
[40] |
Chong X Q, Wu Z J, Li F M. 2022. Vibration isolation properties of the nonlinear X-combined structure with a high-static and low-dynamic stiffness: Theory and experiment.
Mechanical Systems & Signal Processing,
179: 109352.
|
[41] |
Coppola G, Liu K F. 2012. Time‐delayed position feedback control for a unique active vibration isolator.
Structural Control and Health Monitoring,
19: 646-666.
doi:10.1002/stc.460
|
[42] |
Dai H H, Cao X Y, Jing X J, et al. 2020. Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment.
Mechanical Systems and Signal Processing,
142: 106785.
doi:10.1016/j.ymssp.2020.106785
|
[43] |
Dai H H, Jing X J, Wang Y, et al. 2018. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system.
Mechanical Systems and Signal Processing,
105: 214-240.
doi:10.1016/j.ymssp.2017.12.015
|
[44] |
Dalela S, Balaji P S, Jena D P. 2022. Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam.
Nonlinear Dynamics,
108: 1931-1971.
doi:10.1007/s11071-022-07301-0
|
[45] |
Dan P, Vyhlídal T, Michiels W. 2018. Optimized design of robust resonator with distributed time-delay.
Journal of Sound and Vibration,
443: 576-590.
|
[46] |
Dan P, Vyhlídal T, Olgac N. 2015. Delayed resonator with distributed delay in acceleration feedback-design and experimental verification.
IEEE/ASME Transactions on Mechatronics,
21: 2120-2131.
|
[47] |
Demir M U, Yilmaz C. 2022. Analysis and design of an adjustable stiffness three-axis horizontal vibration isolator using elastic columns and a string in tension.
Journal of Sound and Vibration,
523: 22.
|
[48] |
Deng T C, Wen G L, Ding H, et al. 2020. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck.
Mechanical Systems and Signal Processing,
145: 106967.
doi:10.1016/j.ymssp.2020.106967
|
[49] |
Dong X M, Yu M, Li Z S, et al. 2009. Neural network compensation of semi-active control for magneto-rheological suspension with time delay uncertainty.
Smart Materials and Structures,
18: 015014.
doi:10.1088/0964-1726/18/1/015014
|
[50] |
Donmez A, Cigeroglu E, Ozgen G O. 2020. Correction to: an improved quasi-zero stiffness vibration isolation system utilizing dry friction damping.
Nonlinear Dynamics,
101: 107-121.
doi:10.1007/s11071-020-05685-5
|
[51] |
Eskandary-Malayery F, Ilanko S, Mace B, et al. 2022. Experimental and numerical investigation of a vertical vibration isolator for seismic applications.
Nonlinear Dynamics,
109: 303-322.
doi:10.1007/s11071-022-07613-1
|
[52] |
Fulcher B A, Shahan D W, Haberman M R, et al. 2014. Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems.
Journal of Vibration and Acoustics,
136: 031009.
doi:10.1115/1.4026888
|
[53] |
Gao X, Chen Q. 2014. Nonlinear analysis, design and vibration isolation for a bilinear system with time-delayed cubic velocity feedback.
Journal of Sound and Vibration,
333: 1562-1576.
doi:10.1016/j.jsv.2013.11.009
|
[54] |
Gatti G, Brennan M J, Tang B. 2019. Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity.
Mechanical Systems and Signal Processing,
125: 4-20.
doi:10.1016/j.ymssp.2018.08.024
|
[55] |
Gatti G, Kovacic I, Brennan M J. 2010. On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator.
Journal of Sound and Vibration,
329: 1823-1835.
doi:10.1016/j.jsv.2009.11.019
|
[56] |
Gatti G, Shaw A D, Gonçalves P J P, et al. 2022. On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper.
Mechanical Systems and Signal Processing,
164: 108258.
doi:10.1016/j.ymssp.2021.108258
|
[57] |
Gatti G. 2020. Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections.
Communications in Nonlinear Science and Numerical Simulation,
83: 105143.
doi:10.1016/j.cnsns.2019.105143
|
[58] |
Gatti G. 2021. Optimizing elastic potential energy via geometric nonlinear stiffness.
Communications in Nonlinear Science and Numerical Simulation,
103: 1-18.
|
[59] |
Gatti G. 2022b. An adjustable device to adaptively realise diverse nonlinear force-displacement characteristics.
Mechanical Systems and Signal Processing,
180: 1-21.
|
[60] |
Ghasabi S A, Arbabtafti M, Shahgholi M. 2022. Time-delayed control of a nonlinear asymmetrical rotor near the major critical speed with flexible supports.
Mechanics Based Design of Structures and Machines,
50: 242-267.
doi:10.1080/15397734.2020.1715230
|
[61] |
Gu K, Niculescu S L. 2003. Survey on recent results in the stability and control of time-delay systems.
Journal of Dynamic Systems,
125: 158-165.
|
[62] |
Hamdi M, Belhaq M. 2009. Self-excited vibration control for axially fast excited beam by a time delay state feedback.
Chaos Solitons and Fractals,
41: 521-532.
doi:10.1016/j.chaos.2008.02.023
|
[63] |
Han H S, Sorokin V, Tang L H, et al. 2021. A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube.
Nonlinear Dynamics,
105: 1313-1325.
doi:10.1007/s11071-021-06650-6
|
[64] |
Han Y W, Cao Q J, Chen Y S, et al. 2012. A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Science China Physics.
Mechanics and Astronomy,
55: 1832-1843.
doi:10.1007/s11433-012-4880-9
|
[65] |
Hao Z F, Cao Q J. 2015. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness.
Journal of Sound and Vibration,
340: 61-79.
doi:10.1016/j.jsv.2014.11.038
|
[66] |
Heiden U A D, Walther H O. 1983. Existence of chaos in control system with delayed feedback.
Journal of Differential Equations,
47: 273-295.
doi:10.1016/0022-0396(83)90037-2
|
[67] |
Huang D M, Xu W, Xie W X, et al. 2015. Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces.
Nonlinear Dynamics,
81: 641-658.
doi:10.1007/s11071-015-2016-2
|
[68] |
Huang D M, Xu W. 2017. Performance characteristics of a real-power viscoelastic isolation system under delayed PPF control and base excitation.
Nonlinear Dynamics,
88: 2035-2050.
doi:10.1007/s11071-017-3360-1
|
[69] |
Huang D M, Zhou S X, Li R H, et al. 2022. On the analysis of the tristable vibration isolation system with delayed feedback control under parametric excitation.
Mechanical Systems and Signal Processing,
164: 108207.
doi:10.1016/j.ymssp.2021.108207
|
[70] |
Huang X C, Liu X T, Hua H X. 2014. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation.
International Journal of Non-Linear Mechanics,
65: 32-43.
doi:10.1016/j.ijnonlinmec.2014.04.011
|
[71] |
Ibrahim R A. 2008. Recent advances in nonlinear passive vibration isolators.
Journal of Sound and Vibration,
314: 371-452.
doi:10.1016/j.jsv.2008.01.014
|
[72] |
Ishida S, Suzuki K, Shimosaka H. 2016. Design and experimental analysis of Origami-Inspired vibration isolators with quasi-zero-stiffness characteristic//Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5B: V05BT07A015.
|
[73] |
Ishida S, Suzuki K, Shimosaka H. 2017b. Design and experimental analysis of Origami-Inspired vibration isolator with quasi-zero-stiffness characteristic.
Journal of Vibration and Acoustics-Transactions of the ASME,
139: 051004.
doi:10.1115/1.4036465
|
[74] |
Ishida S, Uchida H, Shimosaka H, et al. 2017a. Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures.
Journal of Vibration and Acoustics-Transactions of the ASME,
139: 031015.
doi:10.1115/1.4036096
|
[75] |
Jazar G N, Golnaraghi M F. 2002. Nonlinear modeling, experimental verification, and theoretical analysis of a hydraulic engine mount.
Journal of Vibration and Control,
8: 87-116.
doi:10.1177/1077546302008001519
|
[76] |
Jenkins R, Olgac N. 2019. Real-time tuning of delayed resonator-based absorbers for spectral and spatial variations.
Journal of Vibration and Acoustics,
141: 021011.
doi:10.1115/1.4041592
|
[77] |
Jiang Y, Song C, Ding C, et al. 2020. Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system.
Journal of Sound and Vibration,
477: 115346.
doi:10.1016/j.jsv.2020.115346
|
[78] |
Jin G X, Wang Z H, Yang T Z. 2022. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine.
Applied Mathematics and Mechanics(
English Edition)
|
[79] |
Johnson M, Chen Y, Hovet S, et al. 2017. Fabricating biomedical origami: a state-of-the-art review.
International Journal of Computer Assisted Radiology and Surgery,
12: 2023-2032.
doi:10.1007/s11548-017-1545-1
|
[80] |
Kamaruzaman N A , Robertson W , Ghayesh MH , et al. 2018. Improving passive stability of a planar quasi-zero stiffness magnetic levitation system via lever arm// 2018 IEEE International Magnetics Conference (INTERMAG).
|
[81] |
Kamaruzaman N A, Robertson W S P, Ghayesh M H, et al. 2021. Six degree of freedom quasi-zero stiffness magnetic spring with active control: Theoretical analysis of passive versus active stability for vibration isolation.
Journal of Sound and Vibration,
502: 116086.
doi:10.1016/j.jsv.2021.116086
|
[82] |
Kim J H, Jeon Y J, Um S W, et al. 2019. A Novel Passive Quasi-Zero Stiffness Isolator for Ultra-Precision Measurement Systems.
International Journal of Precision Engineering and Manufacturing,
20: 1573-1580.
doi:10.1007/s12541-019-00149-2
|
[83] |
Korytov M S, Shcherbakov V S, Titenko V V, et al. 2021. Study of the antivibration suspended seat oscillations with quasi-zero stiffness effect under sinusoidal excitation.
Journal of Physics:
Conference Series,
1901: 012120.
doi:10.1088/1742-6596/1901/1/012120
|
[84] |
Kovacic I, Brennan M J, Waters T P. 2008. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic.
Journal of Sound and Vibration,
315: 700-711.
doi:10.1016/j.jsv.2007.12.019
|
[85] |
Kucera V, Pilbauer D, Vyhlídal T. 2017. Extended delayed resonators-Design and experimental verification.
Mechatronics,
41: 29-44.
|
[86] |
Lan C C, Yang S A, Wu Y S. 2014. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads.
Journal of Sound and Vibration,
333: 4843-4858.
doi:10.1016/j.jsv.2014.05.009
|
[87] |
Le T D, Ahn K K. 2013. Experimental investigation of a vibration isolation system using negative stiffness structure.
International Journal of Mechanical Sciences,
70: 99-112.
doi:10.1016/j.ijmecsci.2013.02.009
|
[88] |
Ledezma-Ramirez D F, Tapia-Gonzalez P E, Ferguson N, et al. 2019. Recent Advances in Shock Vibration Isolation: An Overview and Future Possibilities.
Applied Mechanics Reviews,
71: 060802.
doi:10.1115/1.4044190
|
[89] |
Lee C M, Goverdovskiy V N. 2012. A multi-stage high-speed railroad vibration isolation system with “negative” stiffness.
Journal of Sound and Vibration,
331: 914-921.
doi:10.1016/j.jsv.2011.09.014
|
[90] |
Li H, Li H Y, Chen Z B, et al. 2016. Experiments on active precision isolation with a smart conical adapter.
Journal of Sound and Vibration,
374: 17-28.
doi:10.1016/j.jsv.2016.03.039
|
[91] |
Li M, Cheng W, Xie R L. 2020. A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile.
International Journal of Mechanical Sciences,
189: 105938.
|
[92] |
Li S Y, Fang H B, Sadeghi S, et al. 2019. Architected origami materials: how folding creates sophisticated mechanical properties.
Advanced materials,
31: e1805282.
doi:10.1002/adma.201805282
|
[93] |
Li Y L, Xu D L, Fu Y M, et al. 2011. Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control.
Chaos,
21: 033115.
doi:10.1063/1.3615710
|
[94] |
Li Y L, Xu D L, Fu Y M, et al. 2013. Chaotification of a nonlinear vibration isolation system by dual time delayed feedback control.
International Journal of Bifurcation and Chaos,
23: 1350096.
doi:10.1142/S021812741350096X
|
[95] |
Li Y L, Xu D L, Fu Y M, et al. 2014. Dynamic effects of delayed feedback control on nonlinear vibration isolation floating raft systems.
Journal of Sound and Vibration,
333: 2665-2676.
doi:10.1016/j.jsv.2014.02.012
|
[96] |
Li Y L, Xu D L. 2016. Chaotification of quasi-zero-stiffness system with time delay control.
Nonlinear Dynamics,
86: 353-368.
doi:10.1007/s11071-016-2893-z
|
[97] |
Li Y L, Xu D L. 2017. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system.
International Journal of Mechanical Sciences,
126: 186-195.
doi:10.1016/j.ijmecsci.2017.03.029
|
[98] |
Li Z, Kidambi N, Wang L M, et al. 2020. Uncovering rotational multifunctionalities of coupled Kresling modular structures.
Extreme Mechanics Letters,
39: 100795.
doi:10.1016/j.eml.2020.100795
|
[99] |
Ling P, Miao L L, Zhang W M, et al. 2022. Cockroach-inspired structure for low-frequency vibration isolation.
Mechanical Systems and Signal Processing,
171: 108955.
doi:10.1016/j.ymssp.2022.108955
|
[100] |
Liu B Y, Gu L, Dong M M. 2022. Design and characteristic analysis of an X-shaped negative stiffness structure.
Acta Mechanica,
233: 4549-4587.
doi:10.1007/s00707-022-03343-y
|
[101] |
Liu C C, Jing X J, Daley S, et al. 2015. Recent advances in micro-vibration isolation.
Mechanical Systems and Signal Processing,
56: 55-80.
|
[102] |
Liu C R, Tang J, Yu K P, et al. 2020a. On the characteristics of a quasi-zero-stiffness vibration isolator with viscoelastic damper.
Applied Mathematical Modelling,
88: 367-381.
doi:10.1016/j.apm.2020.06.068
|
[103] |
Liu C R, Yu K P, Liao B P, et al. 2021a. Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter.
Communications in Nonlinear Science and Numerical Simulation,
95: 105654.
doi:10.1016/j.cnsns.2020.105654
|
[104] |
Liu C R, Yu K P, Tang J. 2020b. New insights into the damping characteristics of a typical quasi-zero-stiffness vibration isolator.
International Journal of Non-Linear Mechanics,
124: 103511.
doi:10.1016/j.ijnonlinmec.2020.103511
|
[105] |
Liu C R, Zhao R, Yu K P, et al. 2021b. In-plane quasi-zero-stiffness vibration isolator using magnetic interaction and cables: Theoretical and experimental study.
Applied Mathematical Modelling,
96: 497-522.
doi:10.1016/j.apm.2021.03.035
|
[106] |
Liu S W, Peng G L, Jin K. 2021. Design and characteristics of a novel QZS vibration isolation system with origami-inspired corrector.
Nonlinear Dynamics,
106: 255-277.
doi:10.1007/s11071-021-06821-5
|
[107] |
Liu S W, Peng G L, Jin K. 2022. Towards accurate modeling of the Tachi-Miura origami in vibration isolation platform with geometric nonlinear stiffness and damping.
Applied Mathematical Modelling,
103: 674-695.
doi:10.1016/j.apm.2021.11.012
|
[108] |
Liu X T, Huang X C, Hua H X. 2013. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector.
Journal of Sound and Vibration,
332: 3359-3376.
doi:10.1016/j.jsv.2012.10.037
|
[109] |
Liu Y Q, Xu L L, Song C F, et al. 2019. Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping.
Archive of Applied Mechanics,
89: 1743-1759.
doi:10.1007/s00419-019-01541-0
|
[110] |
Liu Z L, Xu J, Fang H B. 2022. Extracting inherent model structures and identifying parameters of time-varying systems using local linear neuro-fuzzy networks.
IEEE Transactions on Fuzzy Systems:
A Publication of the IEEE Neural Networks Council,
30: 233-247.
|
[111] |
Lu J J, Yan G, Qi W H, et al. 2022. Sliding-boundary-constrained cantilever structure for vibration isolation via nonlinear stiffness modulation.
International Journal of Mechanical Sciences,
235: 107733.
doi:10.1016/j.ijmecsci.2022.107733
|
[112] |
Lu Z Q, Yang T J, Brennan M J, et al. 2017. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness.
Journal of Applied Mechanics,
84: 021001.
doi:10.1115/1.4034989
|
[113] |
Ma Z Z, Zhou R P, Yang Q C. 2022. Recent advances in quasi-zero stiffness vibration isolation systems: an overview and future possibilities.
Machines,
10: 813.
doi:10.3390/machines10090813
|
[114] |
Maccari A. 2008. Vibration amplitude control for a van der Pol-Duffing oscillator with time delay.
Journal of Sound and Vibration,
317: 20-29.
doi:10.1016/j.jsv.2008.03.029
|
[115] |
Mao X Y, Yin M M, Ding H, et al. 2022. Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators.
Applied Mathematics and Mechanics(
English Edition)
|
[116] |
Meng H, Sun X T, Xu J, et al. 2020. The generalization of equal-peak method for delay-coupled nonlinear system.
Physica D Nonlinear Phenomena,
403: 132340.
doi:10.1016/j.physd.2020.132340
|
[117] |
Meng H, Sun X T, Xu J, et al. 2021a. Establishment of the equal-peak principle for a multiple-DOF nonlinear system with multiple time-delayed vibration absorbers.
Nonlinear Dynamics,
104: 241-266.
doi:10.1007/s11071-021-06301-w
|
[118] |
Meng H, Sun X T, Xu J, et al. 2021b. Multimodal vibration suppression of nonlinear Euler-Bernoulli beam by multiple time-delayed vibration absorbers.
Meccanica,
56: 2429-2449.
doi:10.1007/s11012-021-01384-6
|
[119] |
Meng L S, Sun J G, Wu W J. 2015. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element.
Shock and Vibration,
2015: 1-19.
|
[120] |
Miyasato H H, Simionatto V G S, Dias M. 2021. Study of a torsional link with radial springs: Periodic responses under base excitation.
European Journal of Mechanics-A/Solids,
89: 104267.
doi:10.1016/j.euromechsol.2021.104267
|
[121] |
Mokni L, Belhaq M. 2012. Using delayed damping to minimize transmitted vibrations.
Communications in Nonlinear Science and Numerical Simulation,
17: 1980-1985.
doi:10.1016/j.cnsns.2011.08.034
|
[122] |
Nakamura Y, Goto S, Horie T, et al. 2013. Implementation of a smith predictor for pneumatic vibration isolators with dead time//39th Annual Conference of the IEEE Industrial Electronics Society, IEEE Industrial Electronics Society: 3574-3579.
|
[123] |
Nakamura Y, Kawakami H, Wakui S. 2015. Suppression of anti-resonance and resonance in pneumatic system of vibration isolator considering time delay//IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, IEEE Industrial Electronics Society: 2509-2514.
|
[124] |
Nia P M, Sipahi R. 2013. Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays.
Journal of Sound and Vibration,
332: 3589-3604.
doi:10.1016/j.jsv.2013.01.016
|
[125] |
Olgac N, Holm-Hansen B T. 1994. A novel active vibration absorption technique: delayed resonator.
Journal of Sound and Vibration,
176: 93-104.
doi:10.1006/jsvi.1994.1360
|
[126] |
Phanisri P P, Phanish S, Glaucio H P, 2018, Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials,
Journal of the Mechanics and Physics of Solids,
118: 115–132
|
[127] |
Pratapa P P, Suryanarayana P, Paulino G H. 2018. Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials.
Journal of the Mechanics and Physics and Solids,
118: 115-132.
doi:10.1016/j.jmps.2018.05.012
|
[128] |
Qi W H, Yan G, Lu J J, et al. 2022. Magnetically modulated sliding structure for low frequency vibration isolation.
Journal of Sound and Vibration,
526: 116819.
doi:10.1016/j.jsv.2022.116819
|
[129] |
Qiao P, Wang J. 2005. Transverse shear stiffness of composite honeycomb cores and efficiency of material.
Mechanics of Advanced Materials and Structures,
12: 159-172.
doi:10.1080/15376490590913576
|
[130] |
Ravindra B, Mallik A K. 1994. Performance of non-linear vibration isolators under harmonic excitation.
Journal of Sound and Vibration,
170: 325-337.
doi:10.1006/jsvi.1994.1066
|
[131] |
Robertson WS, Kidner MRF, Cazzolato BS, et al. 2009. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation.
Journal of Sound and Vibration,
326: 88-103.
doi:10.1016/j.jsv.2009.04.015
|
[132] |
Sadeghi S, Li S Y. 2017. Harnessing the quasi-zero stiffness from fluidic Origami for low frequency vibration isolation// Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems,
2: UNSP V002T03A008.
|
[133] |
Sadeghi S, Li S Y. 2019. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation.
Smart Materials and Structures,
28: 065006.
doi:10.1088/1361-665X/ab143c
|
[134] |
Salvatore A, Carboni B, Lacarbonara W. 2022. Nonlinear dynamic response of an isolation system with superelastic hysteresis and negative stiffness.
Nonlinear dynamics,
107: 1765-1790.
doi:10.1007/s11071-021-06666-y
|
[135] |
Shahraeeni M, Sorokin V, Mace B, et al. 2022. Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator.
Journal of Sound and Vibration,
526: 116822.
doi:10.1016/j.jsv.2022.116822
|
[136] |
Shaw A D, Gatti G, Goncalves P, et al. 2021. Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure.
Mechanical Systems and Signal Processing,
152: 107354.
doi:10.1016/j.ymssp.2020.107354
|
[137] |
Shaw A D, Neild S A, Wagg D J, et al. 2013. Experimental investigation into a passive vibration isolator incorporating a bistable composite plate// 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
|
[138] |
Shin Y H, Kim K J, Chang P H, et al. 2010. Control of pneumatic vibration isolation table by pneumatic and time delay control technique.
Journal of Vibration and Acoustics,
132: 051013-1.
doi:10.1115/1.4001509
|
[139] |
Shin Y H, Kim K J. 2009. Performance enhancement of pneumatic vibration isolation tables in low frequency range by time delay control.
Journal of Sound and Vibration,
321: 537-553.
doi:10.1016/j.jsv.2008.10.030
|
[140] |
Sika Z, Vyhlidal T, Neusser Z. 2021. Two-dimensional delayed resonator for entire vibration absorption.
Journal of Sound and Vibration,
500: 116010.
doi:10.1016/j.jsv.2021.116010
|
[141] |
Singh K V, Ouyang H J. 2013. Pole assignment using state feedback with time delay in friction-induced vibration problems.
Acta Mechanica,
224: 645-656.
doi:10.1007/s00707-012-0778-x
|
[142] |
Suman S, Balaji P S, Selvakumar K, et al. 2021. Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism.
Journal of Vibration Engineering and Technologies,
9: 957-966.
doi:10.1007/s42417-020-00275-6
|
[143] |
Sun J O, Kim K J. 2012. Six-degree of freedom active pneumatic table based on time delay control technique.
Proceedings of the Institution of Mechanical Engineers, Part I. Journal of Systems and Control Engineering,
226: 622-637.
|
[144] |
Sun J O, Kim KJ. 2013. Control of transient vibrations due to stage movements in 6-dof active pneumatic table by inertial force compensation.
Journal of Sound and Vibration,
332: 5241-5254.
doi:10.1016/j.jsv.2013.05.013
|
[145] |
Sun X T, Jing X J, Xu J, et al. 2014a. Vibration isolation via a scissor-like structured platform.
Journal of Sound and Vibration,
333: 2404-2420.
|
[146] |
Sun X T, Jing X J. 2015. Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity.
Mechanical Systems and Signal Processing,
62: 149-163.
|
[147] |
Sun X T, Qi Z F, Xu J. 2022. A novel multi-layer isolation structure for transverse stabilization inspired by neck structure.
Acta Mechanica Sinica,
38: 521543.
doi:10.1007/s10409-022-09039-x
|
[148] |
Sun X T, Wang F, Xu J. 2019a. Analysis, design and experiment of continuous isolation structure with Local Quasi-Zero-Stiffness property by magnetic interaction.
International Journal of Non-Linear Mechanics,
116: 289-301.
doi:10.1016/j.ijnonlinmec.2019.07.008
|
[149] |
Sun X T, Wang F, Xu J. 2019b. Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay.
Journal of Vibration and Acoustics,
141: 021005.
doi:10.1115/1.4041369
|
[150] |
Sun X T, Wang F, Xu J. 2021. A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck.
International Journal of Mechanical Sciences,
193: 106166.
doi:10.1016/j.ijmecsci.2020.106166
|
[151] |
Sun X T, Xu J, Fu J S. 2017. The effect and design of time delay in feedback control for a nonlinear isolation system.
Mechanical Systems and Signal Processing,
87: 206-217.
doi:10.1016/j.ymssp.2016.10.022
|
[152] |
Sun X T, Xu J, Jing X J, et al. 2014b. Beneficial performance of a quasi-zero- stiffness vibration isolator with time-delayed active control.
International Journal of Mechanical Sciences,
82: 32-40.
doi:10.1016/j.ijmecsci.2014.03.002
|
[153] |
Sun X T, Xu J, Wang F. 2018a. A Novel isolation structure with flexible joints for impact and ultralow-frequency excitations.
International Journal of Mechanical Sciences,
146-147: 366-376.
doi:10.1016/j.ijmecsci.2018.08.009
|
[154] |
Sun X T, Zhang S, Xu J, et al. 2018b. Dynamical analysis and realization of an adaptive Isolator.
ASME Trans Journal of Applied Mechanics,
85: 011002.
doi:10.1115/1.4038285
|
[155] |
Sun X T, Zhang S, Xu J. 2018c. Parameter design of a multi-delayed isolator with asymmetrical nonlinearity.
International Journal of Mechanical Sciences,
138-139: 398-408.
doi:10.1016/j.ijmecsci.2018.02.026
|
[156] |
Sun Y X, Xu J. 2015. Experiments and analysis for a controlled mechanical absorber considering delay effect.
Journal of Sound and Vibration,
339: 25-37.
doi:10.1016/j.jsv.2014.11.005
|
[157] |
Valeev A R, Zotov A N, Kharisov S A. 2015. Application of disk springs for manufacturing vibration isolators with quasi-zero stiffness.
Chemical and Petroleum Engineering,
51: 194-200.
doi:10.1007/s10556-015-0023-2
|
[158] |
Vo N Y P, Le T D. 2022. Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator.
Applied sciences,
12: 2378.
doi:10.3390/app12052378
|
[159] |
Vo N Y P, Nguyen M K, Le T D. 2021. Analytical study of a pneumatic vibration isolation platform featuring adjustable stiffness.
Communications in Nonlinear Science and Numerical Simulation,
98: 105775.
doi:10.1016/j.cnsns.2021.105775
|
[160] |
Vyhlídal T, Dan P, Alikoc B, et al. 2019. Analysis and design aspects of delayed resonator absorber with position, velocity or acceleration feedback.
Journal of Sound and Vibration,
459: 114831.
doi:10.1016/j.jsv.2019.06.038
|
[161] |
Wang F, Sun X T, Meng H, et al. 2021. Time-delayed feedback control design and its application for vibration absorption.
IEEE Transactions on Industrial Electronics,
68: 8593-8602.
doi:10.1109/TIE.2020.3009612
|
[162] |
Wang F, Sun X T, Meng H, et al. 2022. Tunable broadband low-frequency band gap of multiple-layer metastructure induced by time-delayed vibration absorbers.
Nonlinear Dynamics,
107: 1903-1918.
doi:10.1007/s11071-021-07065-z
|
[163] |
Wang F, Xu J. 2019. Parameter design for a vibration absorber with time-delayed feedback control.
Acta Mechanica Sinica,
35: 624-640.
doi:10.1007/s10409-018-0822-8
|
[164] |
Wang K, Zhou J X, Chang Y P, et al. 2020. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism.
Nonlinear Dynamics,
101: 755-773.
doi:10.1007/s11071-020-05806-0
|
[165] |
Wang Q, Zhou J X, Xu D L, et al. 2020. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport.
Mechanical Systems and Signal Processing,
139: 19.
|
[166] |
Wang Q B, Wu H, Yang Y J. 2022. The effect of fractional damping and time-delayed feedback on the stochastic resonance of asymmetric SD oscillator.
Nonlinear Dynamics,
107: 2099-2114.
doi:10.1007/s11071-021-07105-8
|
[167] |
Wang S L, Wang Z C. 2022. Curved surface-based vibration isolation mechanism with designable stiffness: Modeling, simulation, and applications.
Mechanical Systems and Signal Processing,
181: 109489.
doi:10.1016/j.ymssp.2022.109489
|
[168] |
Wang X, Yue X K, Dai H H, et al. 2020. Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system.
Acta Astronautica,
168: 1-22.
doi:10.1016/j.actaastro.2019.11.033
|
[169] |
Wang Y, Li H X, Jiang W A, et al. 2021. A base excited mixed-connected inerter-based quasi-zero stiffness vibration isolator with mistuned load.
Mechanics of Advanced Materials and Structures,
29: 4224-4242.
|
[170] |
Weng X T, Yan Z T, Zeng Q H. 2011. Research on time delay of control in hybrid vibration isolation system.
Procedia Engineering,
15: 1224-1228.
doi:10.1016/j.proeng.2011.08.226
|
[171] |
Wu J L, Che J X, Chen X D, et al. 2022a. Design of a combined magnetic negative stiffness mechanism with high linearity in a wide working region.
Science China Technological Sciences,
65: 2127-2142.
doi:10.1007/s11431-022-2121-7
|
[172] |
Wu J L, Zeng L Z, Han B, et al. 2022b. Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation.
International Journal of Mechanical Sciences,
216: 106980.
doi:10.1016/j.ijmecsci.2021.106980
|
[173] |
Wu W, Chen X, Shan Y. 2014. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness.
Journal of Sound and Vibration,
333: 2958-2970.
doi:10.1016/j.jsv.2014.02.009
|
[174] |
Wu Y, Yu K P, Jiao J, et al. 2015. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties.
Mechanism and Machine Theory,
92: 407-435.
doi:10.1016/j.mechmachtheory.2015.06.008
|
[175] |
Xie Y, Niu F, Sun J, et al. 2022. Design and analysis of a novel quasi-zero stiffness isolator under variable loads.
Mathematical Problems in Engineering,
602: 657-663.
|
[176] |
Xu D L, Yu Q P, Zhou J X, et al. 2013. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic.
Journal of Sound and Vibration,
332: 3377-3389.
doi:10.1016/j.jsv.2013.01.034
|
[177] |
Xu J, Sun X T. 2015a. A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control.
International Journal of Mechanical Sciences,
100: 126-135.
doi:10.1016/j.ijmecsci.2015.06.015
|
[178] |
Xu J, Sun Y X. 2015b. Experimental studies on active control of a dynamic system via a time-delayed absorber.
Acta Mechanica Sinica,
31: 229-247.
doi:10.1007/s10409-015-0411-z
|
[179] |
Xu Z L, Wang Y Q, Zhu R, et al. 2021. Torsional bandgap switching in metamaterials with compression-torsion interacted origami resonators.
Journal of Applied Physics,
130: 045105.
doi:10.1063/5.0056179
|
[180] |
Yan B, Ling P, Zhou Y, et al. 2022a. Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness.
Journal of Vibration and Acoustics,
144: 021008.
doi:10.1115/1.4051850
|
[181] |
Yan B, Ma H, Zhang L, et al. 2020. Electromagnetic shunt damping for shock isolation of nonlinear vibration isolators.
Journal of Sound and Vibration,
479: 115370.
doi:10.1016/j.jsv.2020.115370
|
[182] |
Yan B, Pan X G, Su R, et al. 2022b. Nonlinear dynamics characteristics of a tumbler on an arc.
Journal of Sound and Vibration,
525: 116810.
doi:10.1016/j.jsv.2022.116810
|
[183] |
Yan B, Yu N, Wu C Y. 2022c. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms.
Applied Mathematics and Mechanics(
English Edition)
|
[184] |
Yan G, Qi W H, Shi J W, et al. 2022a. Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism.
Journal of Sound and Vibration,
525: 116799.
doi:10.1016/j.jsv.2022.116799
|
[185] |
Yan G, Wang S, Zou H X, et al. 2020a. Bio-inspired polygonal skeleton structure for vibration isolation: Design, modelling, and experiment.
Science China Technological Sciences,
63: 14.
doi:10.1007/s11431-019-9542-5
|
[186] |
Yan G, Wu Z Y, Wei X S, et al. 2022b. Nonlinear compensation method for quasi-zero stiffness vibration isolation.
Journal of Sound and Vibration,
523: 116743.
doi:10.1016/j.jsv.2021.116743
|
[187] |
Yan G, Zou H X, Wang S, et al. 2021. Bio-inspired vibration isolation: Methodology and design.
Applied Mechanics Reviews,
73: 020801.
doi:10.1115/1.4049946
|
[188] |
Yan G, Zou H X, Wang S, et al. 2022a. Bio-inspired toe-like structure for low-frequency vibration isolation.
Mechanical Systems and Signal Processing,
162: 108010.
doi:10.1016/j.ymssp.2021.108010
|
[189] |
Yan G, Zou H X, Yan H, et al. 2020b. Multi-direction vibration isolator for momentum wheel assemblies.
Journal of Vibration and Acoustics- Transactions of the ASME,
142: 041007.
doi:10.1115/1.4046680
|
[190] |
Yang T, Cao Q J, Hao Z F. 2021a. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting.
Mechanical systems and signal processing,
155: 107636.
doi:10.1016/j.ymssp.2021.107636
|
[191] |
Yang T, Cao Q J. 2017. Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations.
Journal of Statistical Mechanics:
Theory and Experiment,
4: 043202.
|
[192] |
Yang T, Cao Q J. 2018. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities.
Mechanical Systems and Signal Processing,
103: 216-235.
doi:10.1016/j.ymssp.2017.10.002
|
[193] |
Yang T, Cao Q J. 2019. Noise- and delay-enhanced stability in a nonlinear isolation system.
International Journal of Non-Linear Mechanics,
110: 81-93.
doi:10.1016/j.ijnonlinmec.2019.01.010
|
[194] |
Yang T, Cao Q J. 2021. Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts.
Archive of Applied Mechanics,
92: 801-819.
|
[195] |
Yang T, Zhou S X, Fang S T, et al. 2021. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications.
Applied Physics Reviews,
8: 031317.
doi:10.1063/5.0051432
|
[196] |
Yang X L, Wu H T, Chen B, et al. 2019. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation.
Journal of Sound and Vibration,
439: 398-412.
doi:10.1016/j.jsv.2018.10.007
|
[197] |
Yang X L, Wu H T, Li Y, et al. 2017. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform.
Mechanism and Machine Theory,
117: 244-252.
doi:10.1016/j.mechmachtheory.2017.07.017
|
[198] |
Ye K, Ji J C, Brown T. 2020. Design of a quasi-zero stiffness isolation system for supporting different loads.
Journal of Sound and Vibration,
471: 115198.
doi:10.1016/j.jsv.2020.115198
|
[199] |
Ye K, Ji J C, Brown T. 2021. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations.
Mechanical Systems and Signal Processing,
149: 107340.
doi:10.1016/j.ymssp.2020.107340
|
[200] |
Ye K, Ji J C. 2022. An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure.
Mechanical Systems and Signal Processing,
165: 108383.
doi:10.1016/j.ymssp.2021.108383
|
[201] |
Zeng R, Wen G L, Zhou J X, et al. 2021. A limb-inspired bionic quasi-zero stiffness vibration isolator.
Acta Mechanica Sinica,
37: 1152-1167.
doi:10.1007/s10409-021-01070-6
|
[202] |
Zeng R, Yin S, Wen G, et al. 2022. A non-smooth quasi-zero-stiffness isolator with displacement constraints.
International Journal of Mechanical Sciences,
225: 107351.
doi:10.1016/j.ijmecsci.2022.107351
|
[203] |
Zhang H P, Yang L H, Su P, et al. 2020. The influence of the controlling delay time on two-degree-of-freedom system with a high-static-low-dynamic-stiffness isolator.
Journal of Vibroengineering,
22: 751-761.
doi:10.21595/jve.2020.20720
|
[204] |
Zhang J, Xu D, Zhou J, et al. 2012. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control.
Chaos Solitons and Fractals,
45: 1255-1265.
doi:10.1016/j.chaos.2012.05.012
|
[205] |
Zhang M K, Yang J Y, Zhu R. 2021. Origami-based bistable metastructures for low-frequency vibration control.
Journal of Applied Mechanics- Transactions of the ASME,
88: 051009.
doi:10.1115/1.4049953
|
[206] |
Zhang Q, Guo D K, Hu G K. 2021. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration Isolation.
Advanced Functional Materials,
31: 2101428.
doi:10.1002/adfm.202101428
|
[207] |
Zhang W, Zhao J B. 2016. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types.
Nonlinear Dynamics,
86: 17-36.
doi:10.1007/s11071-016-2869-z
|
[208] |
Zhang X X, Ji J, Xu J. 2019. Parameter identification of time-delayed nonlinear systems: An integrated method with adaptive noise correction.
Journal of the Franklin Institute,
356: 5858-5880.
doi:10.1016/j.jfranklin.2019.03.023
|
[209] |
Zhang X X, Xu J, Feng Z C. 2017. Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement.
Nonlinear Dynamics,
88: 937-954.
doi:10.1007/s11071-016-3286-z
|
[210] |
Zhang X X, Xu J, Ji J. 2018. Modelling and tuning for a time-delayed vibration absorber with friction.
Journal of Sound and Vibration,
424: 137-157.
doi:10.1016/j.jsv.2018.03.019
|
[211] |
Zhang X X, Xu J. 2014. Identification of time delay in nonlinear systems with delayed feedback control.
Journal of the Franklin Institute,
352: 2987-2998.
|
[212] |
Zhang X X, Xu J. 2016. Time delay identifiability and estimation for the delayed linear system with incomplete measurement.
Journal of Sound and Vibration,
361: 330-340.
doi:10.1016/j.jsv.2015.09.034
|
[213] |
Zhang Y, Liu Q H, Lei Y G, et al. 2023. Halbach high negative stiffness isolator: Modeling and experiments.
Mechanical Systems and Signal Processing,
188: 110014.
doi:10.1016/j.ymssp.2022.110014
|
[214] |
Zhang Y L, Wei G, Wen H, et al. 2021. Design and analysis of a vibration isolation system with cam-roller-spring-rod mechanism.
Journal of Vibration and Control,
28: 1781-1791.
|
[215] |
Zhang Y T, Cao Q J, Huang W H. 2021. Bursting oscillations in an isolation system with quasi-zero stiffness.
Mechanical Systems and Signal Processing,
161: 107916.
doi:10.1016/j.ymssp.2021.107916
|
[216] |
Zhao F, Ji J C, Luo Q T, et al. 2021. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band.
Nonlinear Dynamics,
104: 1-17.
doi:10.1007/s11071-021-06413-3
|
[217] |
Zhao F, Ji J C, Ye K, et al. 2020. Increase of quasi-zero stiffness region using two pairs of oblique springs.
Mechanical Systems and Signal Processing,
144: 106975.
doi:10.1016/j.ymssp.2020.106975
|
[218] |
Zhao F, Cao S Q, Ji J C, et al. 2022a. Enhanced design of the quasi-zero stiffness vibration isolator with three pairs of oblique springs: theory and experiment.
Journal of Vibration and Control,
0: 1-15.
|
[219] |
Zhao F, Cao S Q, Luo Q T, et al. 2022b. Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness.
Nonlinear Dynamics,
108: 3313-3330.
doi:10.1007/s11071-022-07368-9
|
[220] |
Zheng Y S, Li Q P, Yan B, et al. 2018. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs.
Journal of Sound and Vibration,
422: 390-408.
doi:10.1016/j.jsv.2018.02.046
|
[221] |
Zhou J X, Wang K, Xu D L, et al. 2018. Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator.
Journal of Vibration and Control,
24: 3278-3291.
doi:10.1177/1077546317703866
|
[222] |
Zhou J X, Wang X L, Xu D L, et al. 2015a. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms.
Journal of Sound and Vibration,
346: 53-69.
doi:10.1016/j.jsv.2015.02.005
|
[223] |
Zhou J X, Xu D L, Bishop S. 2015b. A torsion quasi-zero stiffness vibration isolator.
Journal of Sound and Vibration,
338: 121-133.
doi:10.1016/j.jsv.2014.10.027
|
[224] |
Zhou J X, Xu D L, Zhang J, et al. 2012. Spectrum optimization-based chaotification using time-delay feedback control.
Chaos Solitons and Fractals,
45: 815-824.
doi:10.1016/j.chaos.2012.02.015
|
[225] |
Zhou N, Liu K. 2010. A tunable high-static-low-dynamic stiffness vibration isolator.
Journal of Sound and Vibration,
329: 1254-1273.
doi:10.1016/j.jsv.2009.11.001
|
[226] |
Zhu G N, Cao Q J, Chen Y S. 2022. An archetypal zero- or quasi-zero-stiffness model with three degrees of freedom based upon an inverse method.
Nonlinear Dynamics, Online.
|
[227] |
Zhu T, Cazzolato B, Robertson W, et al. 2015. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation.
Journal of Sound and Vibration,
358: 48-73.
doi:10.1016/j.jsv.2015.07.013
|
[228] |
Zhu T, Cazzolato B S, Robertson W S, et al. 2011. The development of a 6 degree of freedom quasi-zero stiffness Maglev vibration isolator with adaptive-passive load support// Icmt Secretariat, 2011.
|