Citation: | Lu Y R, Wang J J. Review and prospect on the efficient synthetic jet.AdvancesinMechanics, 2024, 54(1): 1-25doi:10.6052/1000-0992-23-038 |
[1] |
罗振兵, 夏智勋. 2005. 合成射流技术及其在流动控制中应用的进展. 力学进展,
35(2): 14 (Luo Z B, Xia Z X. 2005. Advances in synthetic jet technology and applications in flow control.
Advances in Mechanics,
35(2): 14).
|
[2] |
明晓, 戴昌晖, 史胜熙. 1992. 声学整流效应的新现象. 力学学报,
01: 48-54. (Ming X, Dai C H, Shi S X. 1992. A New Phenomenon of Acoustic Streaming.
Acta Mech. Sin.,
01: 48-54).
|
[3] |
王雷, 李哲, 冯立好. 2023. 合成射流激励器能量转换效率的参数影响规律及优化研究. 实验流体力学,
37(4): 87-95 (Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators.
Journal of Experiments in Fluid Mechanics,
37(4): 87-95).
Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators.
Journal of Experiments in Fluid Mechanics,
37(4): 87-95
|
[4] |
张鉴源, 罗振兵, 彭文强, 等. 2023. 基于合成双射流的襟翼舵效增强技术研究. 实验流体力学,
37(4): 76-86 (Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets.
Journal of Experiments in Fluid Mechanics,
37(4): 76-86).
Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets.
Journal of Experiments in Fluid Mechanics,
37(4): 76-86
|
[5] |
张攀峰, 王晋军, 冯立好. 2008. 零质量射流技术及其应用研究进展. 中国科学(E辑:技术科学),
38(03): 321-349. (Zhang P F, Wang J J, Feng L H. 2008. Review of zero-net-mass-flux jet and its application in separation flow control.
Sci China Series E-Tech. Sci.,
38(03): 321-349).
|
[6] |
庄逢甘, 黄志澄. 2003. 未来高技术战争对空气动力学创新发展的需求. 2003空气动力学前沿研究论文集, 73-79 (Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79).
Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79
|
[7] |
Arshad A, Jabbal M, Yan Y Y. 2020. Synthetic jet actuators for heat transfer enhancement - A critical review.
Int. J. Heat Mass Trans.,
146: 118815.
doi:10.1016/j.ijheatmasstransfer.2019.118815
|
[8] |
Azzawi I D J, Jaworski A J, Mao X. 2021. An Overview of Synthetic Jet Under Different Clamping and Amplitude Modulation Techniques.
ASME. J. Heat Transfer,
143: 031501.
doi:10.1115/1.4049189
|
[9] |
Bushnell D M, Wygnanski I. 2020. Flow control applications. National Aeronautics and Space Administration, Langley Research Center.
|
[10] |
Cattafesta L N, Sheplak M. 2011. Actuators for Active Flow Control.
Annual Review of Fluid Mechanics,
43: 247-272.
doi:10.1146/annurev-fluid-122109-160634
|
[11] |
Chaudhari M, Puranik B, Agrawal A. 2011. Multiple orifice synthetic jet for improvement in impingement heat transfer.
Int. J. Heat Mass Trans.,
54: 2056-2065.
doi:10.1016/j.ijheatmasstransfer.2010.12.023
|
[12] |
Chiatto M, Capuano F, de Luca L. 2018. Numerical and experimental characterization of a double-orifice synthetic jet actuator.
Meccanica,
53: 2883-2896.
doi:10.1007/s11012-018-0866-7
|
[13] |
de Luca L, Girfoglio M, Coppola G. 2014. Modeling and experimental validation of the frequency response of synthetic jet actuators.
AIAA J.,
52: 1733-1748.
|
[14] |
Chiatto M, Capuano F, Coppola G, de Luca L. 2017. LEM characterization of synthetic jet actuators driven by piezoelectric element: A Review. Sensors. 17: 1216.
doi:10.2514/1.J052674
|
[15] |
Feng L H, Wang J J. 2010a. Circular Cylinder Vortex-Synchronization Control with a Synthetic Jet Positioned at the Rear Stagnation Point.
J. Fluid Mech.,
662: 232-259.
doi:10.1017/S0022112010003174
|
[16] |
Feng L H, Wang J J, Pan C. 2010b. Effect of Novel Synthetic Jet on Wake Vortex Shedding Modes of a Circular Cylinder.
J. Fluid Struct.,
26: 900-917.
doi:10.1016/j.jfluidstructs.2010.05.003
|
[17] |
Fu H X, Cohen R E. 2000. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics.
Nature
403: 281-283.
|
[18] |
Fukiba K, Ota K, Harashina Y. 2018. Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifices.
Int. Commun. Heat Mass,
99: 1-6.
doi:10.1016/j.icheatmasstransfer.2018.10.006
|
[19] |
Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L. 2003. Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators.
AIAA J.,
41: 240-247.
doi:10.2514/2.1936
|
[20] |
Gil P, Strzelczyk P. 2016. Performance and efficiency of loudspeaker driven synthetic jet actuator.
Experimental Thermal and Fluid Science,
76: 163-174.
doi:10.1016/j.expthermflusci.2016.03.020
|
[21] |
Glezer A. 1988. The Formation of Vortex Rings.
Phys. Fluids,
31(12): 3532-3541.
doi:10.1063/1.866920
|
[22] |
Glezer A, Amitay M. 2002. Synthetic jets.
Annual Review of Fluid Mechanics,
34: 503-529.
doi:10.1146/annurev.fluid.34.090501.094913
|
[23] |
Gungordu B, Jabbal M, Popov A A. 2023. Enhancing Jet Velocity and Power Conversion Efficiency of Piezoelectric Synthetic Jet Actuators.
AIAA J,
61: 4321-4331.
doi:10.2514/1.J062930
|
[24] |
He W, Luo Z B, Deng X, Xia Z X. 2019. Experimental investigation on the performance of a novel dual synthetic jet actuator-based atomization device.
Int. J. Heat Mass Trans.,
142: 118406.
doi:10.1016/j.ijheatmasstransfer.2019.07.056
|
[25] |
Holman R, Utturkar Y, Mittal R, Smith B L, Cattafesta L. 2005. A Formation Criterion for Synthetic Jets.
AIAA J.,
43(10): 2110-2116.
doi:10.2514/1.12033
|
[26] |
Hong M H, Cheng S Y, Zhong S. 2020. Effect of Geometric Parameters on Synthetic Jet: A Review.
Physics of Fluids,
32(3): 031301.
doi:10.1063/1.5142408
|
[27] |
Huber M, Zienert A, Weigel P, Schuller M, Berger H R, Schuster J, Otto T. 2021. Optimization of synthetic jet actuation by analytical modeling.
Aircraft Engineering and Aerospace Technology,
93: 558-565.
doi:10.1108/AEAT-06-2019-0127
|
[28] |
Ingard U, Labate S. 1950. Acoustic circulation effects and the nonlinear impedance of orifices.
J. Acoust. Soc. Am.,
22(2): 211-218.
doi:10.1121/1.1906591
|
[29] |
Jain M, Puranik B, Agrawal A. 2011. A Numerical Investigation of Effects of Cavity and Orifice Parameters on the Characteristics of a Synthetic Jet Flow.
Sensors and Actuators A:Physical,
165: 351-366.
doi:10.1016/j.sna.2010.11.001
|
[30] |
Krieg M, Mohseni K. 2008. Thrust characterization of pulsatile vortex ring generators for locomotion of underwater robots.
IEEE J. Oceanic Eng.,
33: 123-132.
doi:10.1109/JOE.2008.920171
|
[31] |
Lawson J M, Dawson J R. 2013. The formation of turbulent vortex rings by synthetic jets.
Phys. Fluids,
25: 105113.
doi:10.1063/1.4825283
|
[32] |
Lee C Y, Goldstein D B. 2002. Two-Dimensional Synthetic Jet Simulation.
AIAA J.,
40: 510-516.
doi:10.2514/2.1675
|
[33] |
Li S, Luo Z B, Deng X, Liu Z. 2021. Experimental Investigation on Active Control of Flow around a Finite-Length Square Cylinder Using Dual Synthetic Jet.
J. Wind Eng. Ind. Aerod.,
210: 104519.
doi:10.1016/j.jweia.2021.104519
|
[34] |
Li S, Luo Z B, Deng X, Liu Z Y, Gao T X, Zhao Z J. 2022. Lift Enhancement Based on Virtual Aerodynamic Shape Using a Dual Synthetic Jet Actuator.
Chinese J. Aeronaut.,
35: 117-129.
|
[35] |
Lockerby D A, Carpenter P W. 2004. Modeling and design of microjet actuators.
AIAA J.,
42(2): 220-227.
doi:10.2514/1.9091
|
[36] |
Lu Y R, Qu Y, Wang J S, Wang J J. 2022a. Numerical investigation of flow over a two-dimensional square cylinder with a synthetic jet generated by a bi-frequency signal.
Appl. Math. Mech. -Engl. Ed.,
43: 1569-1584.
doi:10.1007/s10483-022-2919-6
|
[37] |
Lu Y R, Wang J J. 2023. Numerical investigation of synthetic jets generated by various signals in quiescent ambient.
Phys. Fluids,
35: 015107.
doi:10.1063/5.0129806
|
[38] |
Lu Y R, Wang J S, Wang J J. 2022b. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals.
Acta Mech. Sin.,
38: 321177.
doi:10.1007/s10409-021-09015-x
|
[39] |
Luo Z B, Xia Z X, Liu B. 2006. New Generation of Synthetic Jet Actuators.
AIAA J.,
44: 2418-2420.
doi:10.2514/1.20747
|
[40] |
Luo Z B, Zhao Z J, Liu J F, Deng X, Zheng M, Yang H, Chen Q Y, Li S Q. 2022. Novel Roll Effector Based on Zero-Mass-Flux Dual Synthetic Jets and Its Flight Test.
Chinese J. Aeronaut.,
35(8): 1-6.
doi:10.1016/j.cja.2021.08.015
|
[41] |
Mane P, Mossi K, Rostami A, Bryant R, Castro N. 2007. Piezoelectric Actuators as Synthetic Jets: Cavity Dimension Effects.
J. Intel. Mat. Sys. Struct.,
18: 1175-1190.
|
[42] |
Mangate L D, Chaudhari M B. 2016. Experimental Study on Heat Transfer Characteristics of a Heat Sink with Multiple-Orifice Synthetic Jet.
Int. J. Heat Mass Trans,
103: 1181-1190.
doi:10.1016/j.ijheatmasstransfer.2016.08.058
|
[43] |
McCormick D. 2000. Boundary layer separation control with directed synthetic jets.
AIAA P., 2000-0519.
|
[44] |
Palumbo A, de Luca L. 2021. Experimental and CFD Characterization of a Double-Orifice Synthetic Jet Actuator for Flow Control.
Actuators,
10: 326.
doi:10.3390/act10120326
|
[45] |
Riazi H, Ahmed N A. 2011. Numerical Investigation on Two-Orifice Synthetic Jet Actuators of Varying Orifice Spacing, Diameter.
29th AIAA applied aerodynamics conference, 2011-3171.
|
[46] |
Rice T T, Taylor K, Amitay M. 2021. Pulse Modulation of Synthetic Jet Actuators for Control of Separation.
Phys. Rev. Fluids,
6: 093902.
doi:10.1103/PhysRevFluids.6.093902
|
[47] |
Rizzetta D P, Visbal M R, Stanek M J. 2015. Numerical Investigation of Synthetic Jet Flowfields.
AIAA J.,
37: 919-927.
|
[48] |
Rusovici R, Lesieutre G A. 2004. Design of a single-crystal piezoceramic-driven synthetic-jet actuator.
Smart Structures and Materials 2004 Conference. San Diego, CA2004, 276-283.
|
[49] |
Service R F. 1997. Materials Science: Shape-Changing Crystals Get Shiftier. Science,
275(5308): 1878-1878.
|
[50] |
Shan R Q, Wang J J. 2010. Experimental Studies of the Influence of Parameters on Axisymmetric Synthetic Jets.
Sensors and Actuators A-Physical,
157: 107-112.
doi:10.1016/j.sna.2009.11.006
|
[51] |
Sharma R. 2007. Fluid-Dynamic-Based Analytical Model for Synthetic Jet Actuation.
AIAA J.,
45: 1841-1847.
doi:10.2514/1.25427
|
[52] |
Shmilovich A, Yadlin Y, Vijgen P, Woszidlo R. 2023. Applications of Flow Control to Wing High-Lift Leading Edge Devices on a Commercial Aircraft, 2023 AIAA SciTech Forum, 23–27 January, National Harbor, Maryland.
|
[53] |
Shuster J M, Smith D R. 2007. Experimental Study of the Formation and Scaling of a Round Synthetic Jet.
Phys. Fluids,
19(4): 045109.
doi:10.1063/1.2711481
|
[54] |
Smith B L, Glezer A. 1998. The formation and evolution of synthetic jets.
Phys. Fluids,
10(9): 2281-2297.
doi:10.1063/1.869828
|
[55] |
Smith B L, Swift G W. 2001. Synthetic Jet at Large Reynolds Number and Comparison to Continuous Jets.
AIAA P., 2001-3030.
|
[56] |
Tobalske B W, Dial K P. 1996. Flight Kinematics of Black-Billed Magpies and Pigeons over a Wide Range of Speeds.
J. Exp. Bio.,
199: 263-280.
doi:10.1242/jeb.199.2.263
|
[57] |
Utturkar Y, Holman R, Mittal R. 2003. A Jet Formation Criterion for Synthetic Jet Actuator.
AIAA P., 2003-0636.
|
[58] |
Walimbe P, Agrawal A, Cjaudhari M. 2021. Flow Characteristics and Novel Applications of Synthetic Jets: A Review.
ASME. J. Heat Transfer.,
143: 1-67.
|
[59] |
Wang J J, Feng L H. 2019. Flow Control Techniques and Applications. Cambridge University Press.
|
[60] |
Wang J J, Shan R Q, Zhang C, Feng L H. 2010. Experimental Investigation of a Novel Two-Dimensional Synthetic Jet.
Eur. J. Mech. B-Fluid,
29: 342-350.
doi:10.1016/j.euromechflu.2010.05.001
|
[61] |
Wang L, Feng L H, Wang J J, Li T. 2018. Characteristics and Mechanism of Mixing Enhancement for Noncircular Synthetic Jets at Low Reynolds Number.
Exp. Therm. Fluid Sci.,
98: 731-743.
doi:10.1016/j.expthermflusci.2018.06.021
|
[62] |
Wang L, Feng L H, Xu Y. 2023. Lagrangian analysis on structure evolution and mass transport of circular and noncircular turbulent synthetic jets.
Acta Mech. Sin.,
39: 322294.
doi:10.1007/s10409-022-22294-x
|
[63] |
Watson M, Jaworski A J, Wood N J. 2003. A Study of Synthetic Jets from Rectangular, Dual-Circular Orifices.
Aeronaut. J.,
107: 427-434.
doi:10.1017/S000192400001335X
|
[64] |
Wiltse J, Glezer A. 1993. Manipulation of free shear flows using piezoelectric actuators.
J. Fluid Mech.,
249: 261-285.
doi:10.1017/S002211209300117X
|
[65] |
William L S Ⅲ, Gregory S J, Mark D M. 2002. Flow control research at NASA Langley in support of high-lift augmentation.
AIAA P., 2002-6006.
|
[66] |
Xia X, Mohseni K. 2015. Far-field momentum flux of high-frequency axisymmetric synthetic jets.
Phys. Fluids,
27: 115101.
doi:10.1063/1.4935011
|
[67] |
Xu C Y, Long Y G, Wang J J. 2023. Entrainment mechanism of turbulent synthetic jet flow.
J. Fluid Mech.,
958: A31.
doi:10.1017/jfm.2023.102
|
[68] |
Zhang P F, Wang J J. 2007. Novel Signal Wave Pattern for Efficient Synthetic Jet Generation.
AIAA J.,
45: 1058-1065.
doi:10.2514/1.25445
|