Turn off MathJax
Article Contents
Lu Y R, Wang J J. Review and prospect on the efficient synthetic jet. Advances in Mechanics, 2024, 54(1): 1-25 doi: 10.6052/1000-0992-23-038
Citation: Lu Y R, Wang J J. Review and prospect on the efficient synthetic jet.AdvancesinMechanics, 2024, 54(1): 1-25doi:10.6052/1000-0992-23-038

Review and prospect on the efficient synthetic jet

doi:10.6052/1000-0992-23-038
More Information
  • Corresponding author:jjwang@buaa.edu.cn
  • Received Date:2023-09-28
  • Accepted Date:2024-01-02
  • Available Online:2024-01-09
  • As a significant active flow control method, the synthetic jet has been considered to be promising and of great potential in applications. Due to its superior control performance, synthetic jets have wide application in improving aerodynamic characteristics of aircrafts, suppressing vibration and noise, cooling electronic devices and etc. In recent years, a large number of synthetic jet models with higher accuracy have been proposed and the underlying mechanism of the efficient entrainment has been explored more vividly. The optimization of the synthetic jet actuator and further improving its controlling efficiency has attracted more and more attention. The optimization of the actuator and its application are summarized from three aspects respectively, i.e., the actuator structure, the geometric parameters and the actuating signal. Moreover, the possible issues for future investigation have been suggested.

  • loading
  • [1]
    罗振兵, 夏智勋. 2005. 合成射流技术及其在流动控制中应用的进展. 力学进展, 35(2): 14 (Luo Z B, Xia Z X. 2005. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35(2): 14).

    Luo Z B, Xia Z X . 2005 . Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35 ( 2 ): 14
    [2]
    明晓, 戴昌晖, 史胜熙. 1992. 声学整流效应的新现象. 力学学报, 01: 48-54. (Ming X, Dai C H, Shi S X. 1992. A New Phenomenon of Acoustic Streaming. Acta Mech. Sin., 01: 48-54).

    Ming X, Dai C H, Shi S X . 1992 . A New Phenomenon of Acoustic Streaming. Acta Mech. Sin., 01 : 48 - 54 .
    [3]
    王雷, 李哲, 冯立好. 2023. 合成射流激励器能量转换效率的参数影响规律及优化研究. 实验流体力学, 37(4): 87-95 (Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators. Journal of Experiments in Fluid Mechanics, 37(4): 87-95).

    Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators. Journal of Experiments in Fluid Mechanics, 37(4): 87-95
    [4]
    张鉴源, 罗振兵, 彭文强, 等. 2023. 基于合成双射流的襟翼舵效增强技术研究. 实验流体力学, 37(4): 76-86 (Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets. Journal of Experiments in Fluid Mechanics, 37(4): 76-86).

    Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets. Journal of Experiments in Fluid Mechanics, 37(4): 76-86
    [5]
    张攀峰, 王晋军, 冯立好. 2008. 零质量射流技术及其应用研究进展. 中国科学(E辑:技术科学), 38(03): 321-349. (Zhang P F, Wang J J, Feng L H. 2008. Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Series E-Tech. Sci., 38(03): 321-349).

    Zhang P F, Wang J J, Feng L H . 2008 . Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Series E-Tech. Sci., 38 ( 03 ): 321 - 349 .
    [6]
    庄逢甘, 黄志澄. 2003. 未来高技术战争对空气动力学创新发展的需求. 2003空气动力学前沿研究论文集, 73-79 (Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79).

    Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79
    [7]
    Arshad A, Jabbal M, Yan Y Y. 2020. Synthetic jet actuators for heat transfer enhancement - A critical review. Int. J. Heat Mass Trans., 146: 118815. doi:10.1016/j.ijheatmasstransfer.2019.118815
    [8]
    Azzawi I D J, Jaworski A J, Mao X. 2021. An Overview of Synthetic Jet Under Different Clamping and Amplitude Modulation Techniques. ASME. J. Heat Transfer, 143: 031501. doi:10.1115/1.4049189
    [9]
    Bushnell D M, Wygnanski I. 2020. Flow control applications. National Aeronautics and Space Administration, Langley Research Center.
    [10]
    Cattafesta L N, Sheplak M. 2011. Actuators for Active Flow Control. Annual Review of Fluid Mechanics, 43: 247-272. doi:10.1146/annurev-fluid-122109-160634
    [11]
    Chaudhari M, Puranik B, Agrawal A. 2011. Multiple orifice synthetic jet for improvement in impingement heat transfer. Int. J. Heat Mass Trans., 54: 2056-2065. doi:10.1016/j.ijheatmasstransfer.2010.12.023
    [12]
    Chiatto M, Capuano F, de Luca L. 2018. Numerical and experimental characterization of a double-orifice synthetic jet actuator. Meccanica, 53: 2883-2896. doi:10.1007/s11012-018-0866-7
    [13]
    de Luca L, Girfoglio M, Coppola G. 2014. Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J., 52: 1733-1748.
    [14]
    Chiatto M, Capuano F, Coppola G, de Luca L. 2017. LEM characterization of synthetic jet actuators driven by piezoelectric element: A Review. Sensors. 17: 1216. doi:10.2514/1.J052674
    [15]
    Feng L H, Wang J J. 2010a. Circular Cylinder Vortex-Synchronization Control with a Synthetic Jet Positioned at the Rear Stagnation Point. J. Fluid Mech., 662: 232-259. doi:10.1017/S0022112010003174
    [16]
    Feng L H, Wang J J, Pan C. 2010b. Effect of Novel Synthetic Jet on Wake Vortex Shedding Modes of a Circular Cylinder. J. Fluid Struct., 26: 900-917. doi:10.1016/j.jfluidstructs.2010.05.003
    [17]
    Fu H X, Cohen R E. 2000. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403: 281-283.
    [18]
    Fukiba K, Ota K, Harashina Y. 2018. Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifices. Int. Commun. Heat Mass, 99: 1-6. doi:10.1016/j.icheatmasstransfer.2018.10.006
    [19]
    Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L. 2003. Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators. AIAA J., 41: 240-247. doi:10.2514/2.1936
    [20]
    Gil P, Strzelczyk P. 2016. Performance and efficiency of loudspeaker driven synthetic jet actuator. Experimental Thermal and Fluid Science, 76: 163-174. doi:10.1016/j.expthermflusci.2016.03.020
    [21]
    Glezer A. 1988. The Formation of Vortex Rings. Phys. Fluids, 31(12): 3532-3541. doi:10.1063/1.866920
    [22]
    Glezer A, Amitay M. 2002. Synthetic jets. Annual Review of Fluid Mechanics, 34: 503-529. doi:10.1146/annurev.fluid.34.090501.094913
    [23]
    Gungordu B, Jabbal M, Popov A A. 2023. Enhancing Jet Velocity and Power Conversion Efficiency of Piezoelectric Synthetic Jet Actuators. AIAA J, 61: 4321-4331. doi:10.2514/1.J062930
    [24]
    He W, Luo Z B, Deng X, Xia Z X. 2019. Experimental investigation on the performance of a novel dual synthetic jet actuator-based atomization device. Int. J. Heat Mass Trans., 142: 118406. doi:10.1016/j.ijheatmasstransfer.2019.07.056
    [25]
    Holman R, Utturkar Y, Mittal R, Smith B L, Cattafesta L. 2005. A Formation Criterion for Synthetic Jets. AIAA J., 43(10): 2110-2116. doi:10.2514/1.12033
    [26]
    Hong M H, Cheng S Y, Zhong S. 2020. Effect of Geometric Parameters on Synthetic Jet: A Review. Physics of Fluids, 32(3): 031301. doi:10.1063/1.5142408
    [27]
    Huber M, Zienert A, Weigel P, Schuller M, Berger H R, Schuster J, Otto T. 2021. Optimization of synthetic jet actuation by analytical modeling. Aircraft Engineering and Aerospace Technology, 93: 558-565. doi:10.1108/AEAT-06-2019-0127
    [28]
    Ingard U, Labate S. 1950. Acoustic circulation effects and the nonlinear impedance of orifices. J. Acoust. Soc. Am., 22(2): 211-218. doi:10.1121/1.1906591
    [29]
    Jain M, Puranik B, Agrawal A. 2011. A Numerical Investigation of Effects of Cavity and Orifice Parameters on the Characteristics of a Synthetic Jet Flow. Sensors and Actuators A:Physical, 165: 351-366. doi:10.1016/j.sna.2010.11.001
    [30]
    Krieg M, Mohseni K. 2008. Thrust characterization of pulsatile vortex ring generators for locomotion of underwater robots. IEEE J. Oceanic Eng., 33: 123-132. doi:10.1109/JOE.2008.920171
    [31]
    Lawson J M, Dawson J R. 2013. The formation of turbulent vortex rings by synthetic jets. Phys. Fluids, 25: 105113. doi:10.1063/1.4825283
    [32]
    Lee C Y, Goldstein D B. 2002. Two-Dimensional Synthetic Jet Simulation. AIAA J., 40: 510-516. doi:10.2514/2.1675
    [33]
    Li S, Luo Z B, Deng X, Liu Z. 2021. Experimental Investigation on Active Control of Flow around a Finite-Length Square Cylinder Using Dual Synthetic Jet. J. Wind Eng. Ind. Aerod., 210: 104519. doi:10.1016/j.jweia.2021.104519
    [34]
    Li S, Luo Z B, Deng X, Liu Z Y, Gao T X, Zhao Z J. 2022. Lift Enhancement Based on Virtual Aerodynamic Shape Using a Dual Synthetic Jet Actuator. Chinese J. Aeronaut., 35: 117-129.
    [35]
    Lockerby D A, Carpenter P W. 2004. Modeling and design of microjet actuators. AIAA J., 42(2): 220-227. doi:10.2514/1.9091
    [36]
    Lu Y R, Qu Y, Wang J S, Wang J J. 2022a. Numerical investigation of flow over a two-dimensional square cylinder with a synthetic jet generated by a bi-frequency signal. Appl. Math. Mech. -Engl. Ed., 43: 1569-1584. doi:10.1007/s10483-022-2919-6
    [37]
    Lu Y R, Wang J J. 2023. Numerical investigation of synthetic jets generated by various signals in quiescent ambient. Phys. Fluids, 35: 015107. doi:10.1063/5.0129806
    [38]
    Lu Y R, Wang J S, Wang J J. 2022b. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals. Acta Mech. Sin., 38: 321177. doi:10.1007/s10409-021-09015-x
    [39]
    Luo Z B, Xia Z X, Liu B. 2006. New Generation of Synthetic Jet Actuators. AIAA J., 44: 2418-2420. doi:10.2514/1.20747
    [40]
    Luo Z B, Zhao Z J, Liu J F, Deng X, Zheng M, Yang H, Chen Q Y, Li S Q. 2022. Novel Roll Effector Based on Zero-Mass-Flux Dual Synthetic Jets and Its Flight Test. Chinese J. Aeronaut., 35(8): 1-6. doi:10.1016/j.cja.2021.08.015
    [41]
    Mane P, Mossi K, Rostami A, Bryant R, Castro N. 2007. Piezoelectric Actuators as Synthetic Jets: Cavity Dimension Effects. J. Intel. Mat. Sys. Struct., 18: 1175-1190.
    [42]
    Mangate L D, Chaudhari M B. 2016. Experimental Study on Heat Transfer Characteristics of a Heat Sink with Multiple-Orifice Synthetic Jet. Int. J. Heat Mass Trans, 103: 1181-1190. doi:10.1016/j.ijheatmasstransfer.2016.08.058
    [43]
    McCormick D. 2000. Boundary layer separation control with directed synthetic jets. AIAA P., 2000-0519.
    [44]
    Palumbo A, de Luca L. 2021. Experimental and CFD Characterization of a Double-Orifice Synthetic Jet Actuator for Flow Control. Actuators, 10: 326. doi:10.3390/act10120326
    [45]
    Riazi H, Ahmed N A. 2011. Numerical Investigation on Two-Orifice Synthetic Jet Actuators of Varying Orifice Spacing, Diameter. 29th AIAA applied aerodynamics conference, 2011-3171.
    [46]
    Rice T T, Taylor K, Amitay M. 2021. Pulse Modulation of Synthetic Jet Actuators for Control of Separation. Phys. Rev. Fluids, 6: 093902. doi:10.1103/PhysRevFluids.6.093902
    [47]
    Rizzetta D P, Visbal M R, Stanek M J. 2015. Numerical Investigation of Synthetic Jet Flowfields. AIAA J., 37: 919-927.
    [48]
    Rusovici R, Lesieutre G A. 2004. Design of a single-crystal piezoceramic-driven synthetic-jet actuator. Smart Structures and Materials 2004 Conference. San Diego, CA2004, 276-283.
    [49]
    Service R F. 1997. Materials Science: Shape-Changing Crystals Get Shiftier. Science, 275(5308): 1878-1878.
    [50]
    Shan R Q, Wang J J. 2010. Experimental Studies of the Influence of Parameters on Axisymmetric Synthetic Jets. Sensors and Actuators A-Physical, 157: 107-112. doi:10.1016/j.sna.2009.11.006
    [51]
    Sharma R. 2007. Fluid-Dynamic-Based Analytical Model for Synthetic Jet Actuation. AIAA J., 45: 1841-1847. doi:10.2514/1.25427
    [52]
    Shmilovich A, Yadlin Y, Vijgen P, Woszidlo R. 2023. Applications of Flow Control to Wing High-Lift Leading Edge Devices on a Commercial Aircraft, 2023 AIAA SciTech Forum, 23–27 January, National Harbor, Maryland.
    [53]
    Shuster J M, Smith D R. 2007. Experimental Study of the Formation and Scaling of a Round Synthetic Jet. Phys. Fluids, 19(4): 045109. doi:10.1063/1.2711481
    [54]
    Smith B L, Glezer A. 1998. The formation and evolution of synthetic jets. Phys. Fluids, 10(9): 2281-2297. doi:10.1063/1.869828
    [55]
    Smith B L, Swift G W. 2001. Synthetic Jet at Large Reynolds Number and Comparison to Continuous Jets. AIAA P., 2001-3030.
    [56]
    Tobalske B W, Dial K P. 1996. Flight Kinematics of Black-Billed Magpies and Pigeons over a Wide Range of Speeds. J. Exp. Bio., 199: 263-280. doi:10.1242/jeb.199.2.263
    [57]
    Utturkar Y, Holman R, Mittal R. 2003. A Jet Formation Criterion for Synthetic Jet Actuator. AIAA P., 2003-0636.
    [58]
    Walimbe P, Agrawal A, Cjaudhari M. 2021. Flow Characteristics and Novel Applications of Synthetic Jets: A Review. ASME. J. Heat Transfer., 143: 1-67.
    [59]
    Wang J J, Feng L H. 2019. Flow Control Techniques and Applications. Cambridge University Press.
    [60]
    Wang J J, Shan R Q, Zhang C, Feng L H. 2010. Experimental Investigation of a Novel Two-Dimensional Synthetic Jet. Eur. J. Mech. B-Fluid, 29: 342-350. doi:10.1016/j.euromechflu.2010.05.001
    [61]
    Wang L, Feng L H, Wang J J, Li T. 2018. Characteristics and Mechanism of Mixing Enhancement for Noncircular Synthetic Jets at Low Reynolds Number. Exp. Therm. Fluid Sci., 98: 731-743. doi:10.1016/j.expthermflusci.2018.06.021
    [62]
    Wang L, Feng L H, Xu Y. 2023. Lagrangian analysis on structure evolution and mass transport of circular and noncircular turbulent synthetic jets. Acta Mech. Sin., 39: 322294. doi:10.1007/s10409-022-22294-x
    [63]
    Watson M, Jaworski A J, Wood N J. 2003. A Study of Synthetic Jets from Rectangular, Dual-Circular Orifices. Aeronaut. J., 107: 427-434. doi:10.1017/S000192400001335X
    [64]
    Wiltse J, Glezer A. 1993. Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech., 249: 261-285. doi:10.1017/S002211209300117X
    [65]
    William L S Ⅲ, Gregory S J, Mark D M. 2002. Flow control research at NASA Langley in support of high-lift augmentation. AIAA P., 2002-6006.
    [66]
    Xia X, Mohseni K. 2015. Far-field momentum flux of high-frequency axisymmetric synthetic jets. Phys. Fluids, 27: 115101. doi:10.1063/1.4935011
    [67]
    Xu C Y, Long Y G, Wang J J. 2023. Entrainment mechanism of turbulent synthetic jet flow. J. Fluid Mech., 958: A31. doi:10.1017/jfm.2023.102
    [68]
    Zhang P F, Wang J J. 2007. Novel Signal Wave Pattern for Efficient Synthetic Jet Generation. AIAA J., 45: 1058-1065. doi:10.2514/1.25445
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)

    Article Metrics

    Article views (224) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map