力学学报, 2021, 53(1): 194-204 DOI:10.6052/0459-1879-20-248

固体力学

含黏弹性夹芯FG-GRC后屈曲梁的低速冲击响应 1)

金其多,任毅如,2),胡绚,蒋宏勇

湖南大学汽车车身先进设计与制造国家重点实验室, 长沙 410082

LOW-VELOCITY IMPACT RESPONSES OF FG-GRC SANDWICH BEAMS WITH VISCOELASTIC CORES 1)

Jin Qiduo,Ren Yiru,2),Hu Xuan,Jiang Hongyong

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China

通讯作者:2) 任毅如, 副教授/博导, 主要研究方向: 复合材料力学与结构设计. E-mail:renyiru@hnu.edu.cn

收稿日期:2020-07-8接受日期:2020-10-14网络出版日期:2021-12-31

基金资助: 1)工信部基础产品创新科研项目 . 237099000000170008
国家自然科学基金项目资助 . 11402011

Received:2020-07-8Accepted:2020-10-14Online:2021-12-31

作者简介 About authors

摘要

研究了含黏弹性夹芯的功能梯度石墨烯增强复合材料(functionally graded graphene reinforced composite, FG-GRC)后屈曲梁在低速跌落冲击下的跳跃振荡行为.采用修正Halpin-Tsai细观模型预测FG-GRC的材料宏观属性.使用赫兹点接触模型确定冲击器和梁之间的接触力.提出了考虑轴向预应力的复合材料层本构关系和阻尼层的Kelvin型黏弹性本构.通过一种广义高阶剪切变形锯齿梁模型建立夹芯梁的非线性位移场. 基于Hamilton 能量变分原理, 推导了动力学控制方程组. 通过两步分析,首先获得弹性后屈曲平衡路径作为冲击问题的初始状态. 随后, 结合四阶龙格库塔法,拓展了两步摄动-伽辽金法计算接触力的时程曲线以及后屈曲梁的位移时程曲线.研究了后屈曲梁在单次和两次撞击下双稳态大幅振荡过程的动力学特征.讨论了轴向载荷、冲击速度、黏弹性阻尼特性、冲击器材料等因素对于碰撞接触力以及后屈曲梁动力响应的影响规律.结果表明, 接触力仅对冲击速度较为敏感,一定的结构碰撞参数设计可以在接触力变化不大的情况下,使得后屈曲梁由单势能阱运动转变为双阱大幅振荡.

关键词: 低速冲击 ; 后屈曲梁 ; FG-GRC ; 跳跃振荡 ; 黏弹性

Abstract

The dynamic snap-through and oscillation behaviors are studied of a post-buckled functionally graded graphene reinforced composite (FG-GRC) beam with a viscoelastic core under low-velocity impact. The modified Halpin Tsai meso-mechanical model is used to predict the material properties of FG-GRC. The Hertz point contact model is used to calculate the contact force between the impactor and the post-buckled beam. Considering the axial prestress, the constitutive relations of the composite layer and the Kelvin type viscoelastic constitutive model of the damping layer are proposed. A generalized higher-order shear deformation zig-zag beam theory is utilized to model the nonlinear displacement fields. Based on the Hamilton energy variational principle, the governing equations of dynamics are derived. Through two-step analysis, the post-buckling equilibrium paths are obtained as the initial state condition for the impact problem analysis. Further, combined with the fourth-order Runge Kutta method, the two-step perturbation-Galerkin method is extended to simulate the time history curves of the contact force and the dynamic response curves of the post-buckled beams. Compared with the results based on other beam models, the correctness of the material model, theoretical model and computation method is validated. The dynamic characteristics of bi-stable large amplitude vibration of the post-buckled beams under single and two collisions are studied. The effects of axial load, impact velocity, viscoelastic damping characteristics and impactor materials on the contact force and the deflection time history curves of the post-buckled beams are discussed. The results suggest that the contact force is only sensitive to the impact velocity. A certain structural collision parameter design can change the response of the post-buckled beam from single potential energy trap motion to double trap large oscillation, and the contact force is approximately unchanged. The results of this work can be of reference significance for the design of bi-stable energy capture system with collision.

Keywords: low-velocity impact ; post-buckled beam ; FG-GRC ; snap-through oscillation ; viscoelastic

PDF (1692KB)元数据多维度评价相关文章 导出EndNote|Ris|Bibtex 收藏本文

本文引用格式

金其多, 任毅如, 胡绚, 蒋宏勇. 含黏弹性夹芯FG-GRC后屈曲梁的低速冲击响应 1) .力学学报[J], 2021, 53(1): 194-204 DOI:10.6052/0459-1879-20-248

Jin Qiduo, Ren Yiru, Hu Xuan, Jiang Hongyong. LOW-VELOCITY IMPACT RESPONSES OF FG-GRC SANDWICH BEAMS WITH VISCOELASTIC CORES 1) . Chinese Journal of Theoretical and Applied Mechanics [J], 2021, 53(1): 194-204 DOI:10.6052/0459-1879-20-248

引言

石墨烯增强复合材料(graphene reinforced composite, GRC)由于其轻质、高刚强度以及优异的电磁屏蔽性能而备受关注.据报道, 添加0.1%的石墨烯,能使得石墨烯/环氧树脂复合材料的弹性模量比基体环氧树脂提高31%,而同样剂量的单壁或多壁碳纳米管/环氧树脂复合材料则只有3%的提高[1-3].可见, 石墨烯相比于一维纳米材料有更显著的增强作用. 功能梯度材料(functionally graded materials, FGM)作为组份和性质连续变化的复合材料,常被设计用于多物理场耦合的复杂或极端环境[4].Shen等[5]将功能梯度的概念引入了石墨烯增强复合材料, 并发现X型分布石墨烯增强复合材料往往具有最优的力学性能,从而可以充分利用石墨烯的增强作用. 由此,功能梯度石墨烯增强复合材料(functionally graded graphene reinforced composite, FG-GRC)梁、板、壳结构的非线性静、动力学的研究成为了当前的研究热点[6-12].

由于后屈曲梁具有双稳态特性以及稳定的后屈曲承载能力在低频隔振器设计,机器人促动器、能量采集等多个领域具有应用潜力.蓝春波和秦卫阳[13]提出了一类带碰撞的磁斥力双稳态压电振动能量采集系统,使得系统在保持较大振幅的同时,出现更频繁的双阱跳跃运动, 可以大幅提高俘能效率.Tang 等[14]提出了一种具有可调节双稳态机制的软促动器, 用于快速储能/释放.双稳态可同时提高驱动速度和作用力, 以实现高速运动.然而后屈曲结构对突加载荷、自身结构缺陷等因素十分敏感.在轴向预压载荷的放大作用下, 这些因素可能较大地影响结构动力响应,进而破坏结构原有的工作状态. 另一方面, 复合材料对冲击载荷也具有敏感性,在一定的接触力下, 结构容易出现难以观测的内部损伤,使得材料性能劣化,结构刚度下降, 振动幅值增大, 造成局部应力过大引起的强度破坏. 因此,在实际结构冲击动刚度设计中,需要对接触力以及结构冲击动力响应特性进行精细计算和分析.

国内外学者对于FGM和GRC等先进复合材料的弹塑性接触动力响应、冲击损伤演化和应力波传等问题作了丰富研究[15-21].然而后屈曲梁在受到冲击载荷时,存在双稳态间的动力跳跃震荡等更为丰富的力学行为.当前关于FG-GRC后屈曲梁在低速冲击下的动力响应研究尚未有相关的报道.因此建立FG-GRC后屈曲梁冲击动力响应的有效理论模型和计算方法对于其工程设计和应用具有重要意义.

本文提出了考虑轴向预应力的材料本构模型,推导了含阻尼夹芯的FG-GRC后屈曲梁在冲击载荷作用下的动力学控制方程组.扩展了两步摄动法,并结合四阶龙格库塔法获得接触力时程曲线以及梁和冲击器位移时程曲线的半解析半数值解.研究了FG-GRC后屈曲梁在不同冲击速度、轴压载荷、冲击器材料、黏弹性参数下的动力屈曲响应,以期为后屈曲梁的冲击动刚度设计提供参考数据.

1 FG-GRC夹芯梁的理论建模

1.1 夹芯梁的几何建模

图1所示, 考虑一根长度为$L$, 厚度为$h$, 宽度为$b$的夹芯梁,考虑FG-V-Isotropic-FG-$\Lambda$型石墨烯分布,面层为分层FG-GRC, 芯层为各向同性黏弹性材料.

图1

图1FG-GRC后屈曲梁的结构示意图

Fig.1Schematic diagram of FG-GRC post-buckled beams


由于夹芯层和面层的刚度差异往往较大, 在变形过程中,芯层与面层界面处剪应变不连续.然而经典的等效单层剪切梁模型[22]不能反映这样的C$^{0}$连续位移场.刘人怀和薛江红[23]指出, 相比单纯提高位移场阶数,锯齿理论可以用较少的广义位移数来获得较高的精度而被广泛用来分析层合结构的静、动力性能.为同时满足上下表面的剪应力边界条件,采用了一种修正广义高阶剪切变形锯齿理论(HSDZT)[24]

$\begin{eqnarray} \left.\begin{array}{l} \tilde{u}(x, z, t)=u(x, t)+f(z) \dfrac{\partial w(x, t)}{\partial x} +\\ \qquad g(z) \vartheta(x, t)+\varphi(z) \eta(x, t) \\ \tilde{w}(x, z, t)=w(x, t)+w^{*}(x) \end{array}\right\} \end{eqnarray}$

式中, $u$, $w$, $\vartheta $, $\eta $为广义位移, $w^{\ast}$为后屈曲横向挠度, $f$, $g$为高阶形函数, 定义为

$\begin{eqnarray} \label{eq2} f(z)=-\dfrac{4z^{3}}{3h^{2}},\\ g(z)=z-\dfrac{4z^{3}}{3h^{2}} \end{eqnarray}$

$\varphi $为锯齿形函数, 可表示为

$\begin{eqnarray} \label{eq3} \varphi =\left\{\begin{array}{l@{\\ }l} \dfrac{-2}{h_{f}}\left[ z-\dfrac{1}{2}\left( z_{fT} +z_{fB}\right)\right]-\dfrac{8z^{3}}{3h_{f}h^{2}} & (\text{face sheets})\\ \dfrac{2}{h_{c}}\left[ z-\dfrac{1}{2}\left(z_{cT} +z_{cB}\right)\right]-\dfrac{8z^{3}}{3h_{c}h^{2}} & (\text{core})\\ \end{array}\right. \end{eqnarray}$

式中下标fT和fB分别表示面层的上表面和下表面; 下标cT和cB分别表示夹芯层的上表面和下表面.

值得注意的是, 虽然面层的石墨烯是分层梯度分布, 由于面板较薄, 且各层刚度差异较小, 因此面层层间的锯齿效应可忽略不计.

基于大变形、小应变假设, 可以得到考虑压屈初挠度的几何关系

$\begin{eqnarray} \label{eq4} \left.\begin{array}{l} \varepsilon_{x x}=\dfrac{\partial \tilde{u}}{\partial x}+\dfrac{1}{2}\left(\dfrac{\partial \tilde{w}}{\partial x}\right)^{2} \\ \gamma_{z x}=\dfrac{\partial \tilde{u}}{\partial z}+\dfrac{\partial w}{\partial x} \end{array}\right\} \end{eqnarray}$

1.2 材料细观模型

采用扩展Halpin-Tsai模型预测FG-GRC第$k$层的杨氏模量和剪切模量[5]

$\begin{eqnarray} \label{eq5} \left.\begin{array}{l} E_{11}^{(k)}=\eta_{1}^{(k)} \dfrac{1+2\left(a_{G} / h_{G}\right) \gamma_{11}^{G} V_{G}^{(k)}}{1-\gamma_{11}^{G} V_{G}^{(k)}} E^{m} \\ E_{22}^{(k)}=\eta_{2}^{(k)} \dfrac{1+\left(2 b_{G} / h_{G}\right) \gamma_{22}^{G} V_{G}^{(k)}}{1-\gamma_{22}^{G} V_{G}^{(k)}} E^{m} \\ G_{12}^{(k)}=\eta_{3}^{(k)} \dfrac{1}{1-\gamma_{12}^{G} V_{G}^{(k)}} G^{m} \end{array}\right\} \end{eqnarray}$

式中, $E$和$G$分别表示杨氏模量和剪切模量, 上标G和m分别表示石墨烯和基体. $a_{G} $, $b_{G}$, $h_{G} $分别表示石墨烯片的长度、宽度和有效厚度. $V_{G} $, $V_{m} $分别表示石墨烯体积分数与基体体积分数, 满足$V_{m} +V_{G} =1$. $\eta_{i} \left( {i=1,2,3} \right)$为考虑纳米效应的修正因子. 不同温度下$\eta_{i} $的值以及$\gamma_{ij}^{G} \left( {i,j=0,1,2} \right)$的表达可参见文献[5].

由于温度对GRCs的密度和泊松比影响可忽略, 可以用混合律来预测GRCs的密度和泊松比

$\begin{eqnarray} \label{eq6} \left.\begin{array}{l} \rho^{(k)}=V_{G}^{(k)} \rho^{G}+V_{m}^{(k)} \rho^{m} \\ v_{12}^{(k)}=V_{G}^{(k)} v_{12}^{G}+V_{m}^{(k)} v^{m} \end{array}\right\} \end{eqnarray}$

1.3 材料本构关系

由轴向预压力产生的应变可以表示为

$\begin{eqnarray} \label{eq7} \varepsilon_{x x}^{(init)}=\dfrac{\Delta P}{b \displaystyle\sum_{k=1}^{N} \int_{z_{k}}^{z_{k+1}} \tilde{Q}_{11}^{(k)} {d} z} \end{eqnarray}$

式中, $\Delta P$为轴向压力, $\tilde{Q}_{11}^{(k)}$为第$k$层的拉压模量, 可表示为

$\begin{eqnarray} \label{eq8} \tilde{Q}_{11}^{(k)}=\left\{\begin{array}{l@{\\ \ }l} \bar{Q}_{11}^{(k)}-\left[\begin{array}{c} \bar{Q}_{12}^{(k)} \\ \bar{Q}_{16}^{(k)} \end{array}\right]^{T}\left[\begin{array}{cc} \bar{Q}_{22}^{(k)} & \bar{Q}_{26}^{(k)} \\ {sym} & \bar{Q}_{66}^{(k)} \end{array}\right]\left[\begin{array}{c} \bar{Q}_{12}^{(k)} \\ \bar{Q}_{16}^{(k)} \end{array}\right] & \left(\begin{array}{c} \text{face} \\ \text{sheet} \end{array}\right) \\ E & (\text {core}) \end{array}\right. \end{eqnarray}$

第$k$层的剪切模量$\tilde{Q}_{55}^{(k)}$, 可表示为

$\begin{eqnarray} \label{eq9} \tilde{Q}_{55}^{(k)}=\left\{\begin{array}{l@{\\ \ }l} \bar{Q}_{55}^{(k)}-\dfrac{1}{\bar{Q}_{44}^{(k)}}\left(\bar{Q}_{45}^{(k)}\right)^{2} & (\text {face sheets}) \\ G & (\text {core}) \end{array}\right. \end{eqnarray}$

式中, $\bar{Q}_{ij}^{(k)}$ $(i,j=1,2,4,5,6)$为第$k$层复合材料偏轴方向的刚度系数,它与材料主轴方向的刚度系数$Q_{ij}^{\left( k \right)}$的转换关系可参考文献[25],$E$和$G$分别表示各向同性夹芯材料的弹性模量和剪切模量.

在平面弯曲假设下, 与$y$方向相关的应力分量可忽略. 考虑轴向预压约束, 可以得到FG-GRC的本构关系

$\begin{eqnarray} \label{eq10} \left.\begin{array}{l} \sigma_{x x}^{(k)}=\tilde{Q}_{11}^{(k)}\left[\varepsilon_{xx}^{(k)}-\varepsilon_{x x}^{(init)}\right] \\ \tau_{z x}^{(k)}=\tilde{Q}_{55}^{(k)} \gamma_{z x}^{(k)} \end{array}\right\} \end{eqnarray}$

为了表征夹芯材料的阻尼特性, 引入Kevin-Voigt黏弹性材料模型. 考虑轴向预压应变,其法向应力$\sigma_{xx} $和剪应力$\tau_{zx} $可分别表示为

$\begin{eqnarray} \label{eq11} \left. \begin{array}{l} \sigma_{xx} =E\left[ \varepsilon_{xx} -\varepsilon_{xx}^{(init)}\right]+c\dot{{\varepsilon }}_{xx}\\ \tau_{zx} =G\gamma_{zx} +j\dot{{\gamma }}_{zx}\\ \end{array}\right\} \end{eqnarray}$

1.4 接触模型

使用赫兹接触定律[26]来预测冲击器和FG-GRC夹芯梁的接触力. 在加载过程中, 接触力$F_{c} $可以表示为

$\begin{eqnarray} \label{eq12} F_{c} =K_{c} \left( {w^{i}-w^{b}} \right)^{r} \end{eqnarray}$

式中$w^{i}$表示冲击器位移, $w^{b}$表示梁接触位置的横向位移. 对于复合材料层合靶, 系数$r$可以取1.5. 此外, $K_{c} $为接触刚度, 可表示为

$\begin{eqnarray} \label{eq13} K_{c} =\dfrac{4}{3}\left( {\dfrac{1-\mu^{i}\mu^{i}}{E^{i}}+\dfrac{1}{E_{33}}} \right)^{-1}\sqrt {R^{i}} \end{eqnarray}$

其中$E^{i}$, $\mu^{i}$和$R^{i}$分别是冲击器的杨氏模量、泊松比和半径.$E_{33} $为采用分子动力学模拟得到的GRC$_{S}$顶部表面的横向杨氏模量[27].

在卸载过程中, 接触力可以表示为

$\begin{eqnarray} F_{c} =F_{\max } \left( {\dfrac{\alpha -\alpha_{0} }{\alpha_{\max } -\alpha _{0} }} \right)^{{5}/{2}} \end{eqnarray}$

式中, $F_{\max } $, $\alpha_{\max }$分别表示最大接触力和对应的最大压痕深度. 不考虑塑性变形产生的永久压痕,因此$\alpha_{0} =0$.

2 控制方程和求解

可以建立冲击器的运动微分方程

$\begin{eqnarray} m^{i}\ddot{{w}}^{i}\left( t \right)+F_{c} \left( t \right)-m^{i}g=0 \end{eqnarray}$$

式中上标i表示为冲击器.

冲击器的初始条件设定为

$\begin{eqnarray} w_{i} \left( 0 \right)=0, \dot{{w}}_{i} \left( 0 \right)=v^{i} \end{eqnarray}$

在小应变的假设前提下, 可以基于初始构型,利用Hamilton变分原理获得后屈曲梁在低速冲击下的运动微分方程.忽略轴向惯性项以及梁在一定轴压载荷下的蠕变过程, 将几何方程和本构关系代入,再引入梁在压屈后的不可移动位移边界条件, 获得用广义位移表示的控制方程组

$\begin{eqnarray} \left.\begin{array}{l} \left( {D_{11} +\bar{{D}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{4}w}{\partial x^{4}}+\left( {G_{11} +\bar{{G}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{3}\vartheta }{\partial x^{3}} +\\ \qquad\left( {H_{11} +\bar{{H}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{3}\eta }{\partial x^{3}}-\left( {D_{55} +\bar{{D}}_{55} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial ^{2}w}{\partial x^{2}} -\\ \qquad\left( {G_{55} +\bar{{G}}_{55} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial \vartheta }{\partial x}-\left( {H_{55} +\bar{{H}}_{55} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial \eta }{\partial x} -\\ \qquad\left[ {\int_0^L {\dfrac{A_{11} }{2L}\left( {\dfrac{\partial \tilde{{w}}}{\partial x}} \right)^{2}} {d}x-\Delta P} \right]\dfrac{\partial ^{2}\tilde{{w}}}{\partial x^{2}}-q +\\ \qquad\rho_{0} \ddot{{w}}-\dfrac{\partial }{\partial x}\left( {\rho_{4} \dfrac{\partial \ddot{{w}}}{\partial x}+\rho_{5} \ddot{{\vartheta }}+\rho_{6} \ddot{{\eta }}} \right)=0 \\ \left( {G_{11} +\bar{{G}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{3}w}{\partial x^{3}}+\left( {I_{11} +\bar{{I}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{2}\vartheta }{\partial x^{2}} +\\ \qquad\left( {J_{11} +\bar{{J}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{2}\eta }{\partial x^{2}}-\left( {G_{55} +\bar{{G}}_{55} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial w}{\partial x} -\\ \qquad\left( {I_{55} +\bar{{I}}_{55} \dfrac{\partial }{\partial t}} \right)\vartheta -\left( {J_{55} +\bar{{J}}_{55} \dfrac{\partial }{\partial t}} \right)\eta = \\ \qquad \rho_{5} \dfrac{\partial \ddot{{w}}}{\partial x}+\rho_{7} \ddot{{\vartheta }}+\rho_{8} \ddot{{\eta }} \\ \left( {H_{11} +\bar{{H}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{3}w}{\partial x^{3}}+\left( {J_{11} +\bar{{J}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{2}\vartheta }{\partial x^{2}} +\\ \qquad\left( {R_{11} +\bar{{R}}_{11} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial^{2}\eta }{\partial x^{2}}-\left( {H_{55} +\bar{{H}}_{55} \dfrac{\partial }{\partial t}} \right)\dfrac{\partial w}{\partial x} -\\ \qquad\left( {J_{55} +\bar{{J}}_{55} \dfrac{\partial }{\partial t}} \right)\vartheta -\left( {R_{55} +\bar{{R}}_{55} \dfrac{\partial }{\partial t}} \right)\eta =\\ \qquad\rho_{6} \dfrac{\partial \ddot{{w}}}{\partial x}+\rho_{8} \ddot{{\vartheta }}+\rho_{9} \ddot{{\eta }} \\ \end{array}\right\} \end{eqnarray}$

式中, $q=F_{c} \delta \left( {x-L/2} \right)$, $\delta $是狄拉克函数,表示碰撞位置在梁的中点. 广义刚度系数表示为

$\begin{eqnarray} \left.\begin{array}{l} \left(A_{11}, B_{11}, D_{11}, E_{11}, F_{11}, G_{11}, H_{11}, I_{11}, J_{11}, R_{11}\right)= \\ \qquad b \sum_{k=1}^{N} \int_{z_{k}}^{z_{k+1}}\left(1, f, f^{2}, g, \varphi, f g, f \varphi, g^{2}, g \varphi, \varphi^{2}\right)\cdot\\[4mm]\qquad \tilde{Q}_{11}^{(k)} {d} z \\ \left(D_{55}, G_{55}, H_{55}, I_{55}, J_{55}, R_{55}\right)= \\ \qquad b \sum_{k=1}^{N} \int_{z_{k}}^{z_{k+1}}\left(\bar{f}^{2}, \bar{f} \bar{g}, \bar{f} \bar{\varphi}, \bar{g}^{2}, \bar{g} \bar{\varphi}, \bar{\varphi}^{2}\right) \tilde{Q}_{55}^{(k)} {d} z \end{array}\right\} \end{eqnarray}$

广义阻尼系数表示为

$\begin{eqnarray} \left.\begin{array}{l} \left(\bar{A}_{11}, \bar{B}_{11}, \bar{D}_{11}, \bar{E}_{11}, \bar{F}_{11}, \bar{G}_{11}, \bar{H}_{11}, \bar{I}_{11}, \bar{J}_{11}, \bar{R}_{11}\right)= \\[2mm]\quad b \int_{c_{c B}}^{z_{c T}}\left(1, f, f^{2}, g, \varphi, f g, f \varphi, g^{2}, g \varphi, \varphi^{2}\right) c {d} z \\ \left(\bar{D}_{55}, \bar{G}_{55}, \bar{H}_{55}, \bar{I}_{55}, \bar{J}_{55}, \bar{R}_{55}\right)= \\[2mm]\quad b \int_{c_{c B}}^{z_{c T}}\left(\bar{f}^{2}, \bar{f} \bar{g}, \bar{f} \bar{\varphi}, \bar{g}^{2}, \bar{g} \bar{\varphi}, \bar{\varphi}^{2}\right) j {d} z \end{array}\right\} \end{eqnarray}$

并且

$\begin{eqnarray} \label{eq20} &&\left( {\rho_{0} ,\rho_{4} ,\rho_{5} ,\rho_{6} ,\rho_{7} ,\rho_{8} ,\rho_{9} } \right)= b\sum\limits_{k=1}^{N} \int_{z_{k} }^{z_{k+1} } \rho^{\left( k \right)}\left( {1,f^{2},fg,f\varphi ,g^{2},g\varphi ,\varphi^{2}} \right){d}z\qquad \end{eqnarray}$

式中 $\rho^{\left( k \right)}$是第$k$层密度. $\bar{{f}}$, $\bar{{g}}$ 和$\bar{{\varphi }}$分别定义为

$\begin{eqnarray} \label{eq21} \bar{{f}}=\dfrac{\partial f}{\partial z}+1,\\ \bar{{g}}=\dfrac{\partial g}{\partial z},\\ \bar{{\varphi }}=\dfrac{\partial \varphi }{\partial z} \end{eqnarray}$

引入无量纲数

$\begin{eqnarray} \left.\begin{array}{l} X=\pi x/L,\\ \left( {\tilde{{W}},W,W^{\ast}} \right)=\left( {\tilde{{w}},w,w^{\ast}} \right)/L \\[2mm] {H}=\dfrac{\eta }{\pi },\\ \varTheta =\dfrac{\vartheta }{\pi },\\ \gamma_{0} =\dfrac{A_{11} L^{2}}{D_{0} \pi^{2}},\\ \lambda_{P} =\dfrac{\Delta PL^{2}}{D_{0} \pi^{2}} \\ \lambda_{q} =\dfrac{qL^{3}}{D_{0} \pi^{4}},\\ \varPsi_{0} =\dfrac{\rho_{0} L^{2}Q_{0} }{D_{0} \pi^{2}I_{0} },\\ \tau =\dfrac{\pi t}{L}\sqrt {\dfrac{Q_{0} }{I_{0} }} \\ \end{array}\right\}\qquad \end{eqnarray}$

$\begin{eqnarray} \label{eq22} \left.\begin{array}{l} \left( {\begin{array}{l} \gamma_{1} ,\gamma_{2} ,\gamma_{3} , \\ \gamma_{5} ,\gamma_{6} ,\gamma_{9} \\ \end{array}} \right)=\dfrac{1}{D_{0} }\left( {\begin{array}{l} D_{11} ,G_{11} ,H_{11} , \\ I_{11} ,J_{11} ,R_{11} \\ \end{array}} \right) \\ \left( {\begin{array}{l} \bar{{\gamma }}_{1} ,\bar{{\gamma }}_{2} ,\bar{{\gamma }}_{3} , \\ \bar{{\gamma }}_{5} ,\bar{{\gamma }}_{6} ,\bar{{\gamma }}_{9} \\ \end{array}} \right)=\dfrac{1}{\bar{{D}}_{0} }\left( {\begin{array}{l} \bar{{D}}_{11} ,\bar{{G}}_{11} ,\bar{{H}}_{11} , \\ \bar{{I}}_{11} ,\bar{{J}}_{11} ,\bar{{R}}_{11} \\ \end{array}} \right) \\ \left( {\begin{array}{l} \gamma_{10} ,\gamma_{11} ,\gamma_{12} , \\ \gamma_{13} ,\gamma_{14} ,\gamma_{15} \\ \end{array}} \right)=\dfrac{L^{2}}{\pi^{2}D_{0} }\left( {\begin{array}{l} D_{55} ,G_{55} ,H_{55} , \\ I_{55} ,J_{55} ,R_{55} \\ \end{array}} \right) \\ \left( {\begin{array}{l} \bar{{\gamma }}_{10} ,\bar{{\gamma }}_{11} ,\bar{{\gamma }}_{12} , \\ \bar{{\gamma }}_{13} ,\bar{{\gamma }}_{14} ,\bar{{\gamma }}_{15} \\ \end{array}} \right)=\dfrac{L^{2}}{\pi^{2}\bar{{D}}_{0} }\left( {\begin{array}{l} \bar{{D}}_{55} ,\bar{{G}}_{55} ,\bar{{H}}_{55} , \\ \bar{{I}}_{55} ,\bar{{J}}_{55} ,\bar{{R}}_{55} \\ \end{array}} \right) \\ \left( {\begin{array}{l} \varPsi_{4} ,\varPsi_{5} ,\varPsi_{6} , \\ \varPsi_{7} ,\varPsi_{8} ,\varPsi_{9} \\ \end{array}} \right)=\left( {\begin{array}{l} \rho_{4} ,\rho_{5} ,\rho_{6} , \\ \rho_{7} ,\rho_{8} ,\rho_{9} \\ \end{array}} \right)\dfrac{Q_{0} }{I_{0} D_{0} } \\ \end{array}\right\} \end{eqnarray}$

式中

$\begin{eqnarray} Q_{0} =E_{m} , I_{0} =\rho_{m} ,D_{0} =D_{11} ,\bar{{D}}_{0} =\bar{{D}}_{11} \end{eqnarray}$

其中, $E_{m}$和$\rho_{m} $表示基体在室温(300 K)下的参考值. 另记

$\begin{eqnarray} \label{eq24} \left.\begin{array}{l} \gamma_{4} =\gamma_{2} , \gamma_{7} =\gamma_{3} , \gamma_{8} =\gamma_{6} \\ \bar{{\gamma }}_{4} =\bar{{\gamma }}_{2}, \bar{{\gamma }}_{7} =\bar{{\gamma}}_{3} , \bar{{\gamma }}_{8} =\bar{{\gamma}}_{6} \end{array}\right\} \end{eqnarray}$

结合式(22)~式(24)可以得到无量纲控制方程组

$\begin{eqnarray} \left.\begin{array}{l} \left(\gamma_{1}+\lambda \bar{\gamma}_{1} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{4} W}{\partial X^{4}}+\left(\gamma_{2}+\lambda \bar{\gamma}_{2} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{3} \varTheta}{\partial X^{3}} +\\ \quad\left(\gamma_{3}+\lambda \bar{\gamma}_{3} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{3} H}{\partial X^{3}}-\left(\gamma_{10}+\lambda \bar{\gamma}_{10} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{2} W}{\partial X^{2}} -\\ \quad\left(\gamma_{11}+\lambda \bar{\gamma}_{11} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial \varTheta}{\partial X}-\left(\gamma_{12}+\lambda \bar{\gamma}_{12} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial H}{\partial X}-\lambda_{q} -\\ \quad\left[\pi \int_{0}^{\pi} \dfrac{\gamma_{0}}{2}\left(\dfrac{\partial\left(W+W^{*}\right)}{\partial X}\right)^{2} {d} X-\lambda_{P}\right] \dfrac{\partial^{2}\left(W+W^{*}\right)}{\partial X^{2}} +\\ \quad\varPsi_{0} \dfrac{\partial^{2} W}{\partial \tau^{2}}=\dfrac{\partial}{\partial X}\left(\varPsi_{4} \dfrac{\partial^{3} W}{\partial X \partial \tau^{2}}+\varPsi_{5} \dfrac{\partial^{2} \varTheta}{\partial \tau^{2}}+\varPsi_{6} \dfrac{\partial^{2} H}{\partial \tau^{2}}\right) \\ \left(\gamma_{4}+\lambda \bar{\gamma}_{4} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{3} W}{\partial X^{3}}+\left(\gamma_{5}+\lambda \bar{\gamma}_{5} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{2} \varTheta}{\partial X^{2}} +\\ \quad\left(\gamma_{6}+\lambda \bar{\gamma}_{6} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{2} H}{\partial X^{2}}-\left(\gamma_{11}+\lambda \bar{\gamma}_{11} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial W}{\partial X} -\\ \quad\left(\gamma_{13}+\lambda \bar{\gamma}_{13} \dfrac{\partial}{\partial \tau}\right) \varTheta-\left(\gamma_{14}+\lambda \bar{\gamma}_{14} \dfrac{\partial}{\partial \tau}\right) H -\\ \quad\left(\varPsi_{5} \dfrac{\partial^{3} W}{\partial X \partial \tau^{2}}+\varPsi_{7} \dfrac{\partial^{2} \varTheta}{\partial \tau^{2}}+\varPsi_{8} \dfrac{\partial^{2} H}{\partial \tau^{2}}\right)=0 \\ \left(\gamma_{7}+\lambda \bar{\gamma}_{7} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{3} W}{\partial X^{3}}+\left(\gamma_{8}+\lambda \bar{\gamma}_{8} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{2} \varTheta}{\partial X^{2}} +\\ \quad\left(\gamma_{9}+\lambda \bar{\gamma}_{9} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial^{2} H}{\partial X^{2}}-\left(\gamma_{12}+\lambda \bar{\gamma}_{12} \dfrac{\partial}{\partial \tau}\right) \dfrac{\partial W}{\partial X} -\\ \quad\left(\gamma_{14}+\lambda \bar{\gamma}_{14} \dfrac{\partial}{\partial \tau}\right) \varTheta-\left(\gamma_{15}+\lambda \bar{\gamma}_{15} \dfrac{\partial}{\partial \tau}\right) H -\\ \quad\left(\varPsi_{6} \dfrac{\partial^{3} W}{\partial X \partial \tau^{2}}+\varPsi_{8} \dfrac{\partial^{2} \varTheta}{\partial \tau^{2}}+\varPsi_{9} \dfrac{\partial^{2} H}{\partial \tau^{2}}\right)=0 \end{array}\right\}\quad \ \end{eqnarray}$

式中

$\begin{eqnarray} \lambda =\dfrac{\pi \bar{{D}}_{0} }{LD_{0} }\sqrt {\dfrac{Q_{0} }{I_{0} }} \end{eqnarray}$

对于后屈曲梁的动力学问题, 需要先得到后屈曲挠度$W^{\ast}$,再代入控制方程(25)求解. 忽略方程(25)中的惯性项和横向载荷,并且忽略梁在一定轴压下的延时变形过程, 即得到了梁在蠕变稳定后的后屈曲控制方程.采用两步摄动法可以得到后屈曲平衡路径的三阶渐进解.详细过程可参考文献[28-29]

$\begin{eqnarray} && \lambda_{P} =\lambda_{P}^{\left( 0 \right)} +\varepsilon^{2}\lambda _{P}^{\left( 2 \right)} +O\left( {\varepsilon^{4}} \right) =\left( {\gamma_{11} +\gamma_{2} } \right)\dfrac{B_{10}^{\ast } }{A_{10}^{\ast } }+ \left( {\gamma_{12} +\gamma_{3} } \right)\dfrac{C_{10}^{\ast } }{A_{10}^{\ast } }+\gamma_{1} +\gamma_{10} +\dfrac{\gamma_{0} \left( {\pi W_{m}^{\ast } } \right)^{2}}{4} \end{eqnarray}$

式中, $W_{m}^{\ast } $表示屈曲梁的中点最大挠度. $B_{10}^{\ast }/A_{10}^{\ast } $和$C_{10}^{\ast } /A_{10}^{\ast } $的表达式参见附录.

假定振动位移正方向与后屈曲挠度正方向相反, 令$W=-W_{0} $, $\varTheta =-\varTheta_{0} $, ${H}=-{H}_{0} $, 代入控制方程(26). 使用两步摄动法离散控制方程, 并引入$\tilde{t}=\varepsilon \tau$使得动力项和阻尼项仅出现在高阶方程

$\begin{eqnarray} \left.\begin{array}{l} \lambda_{q} =\sum_{k=1} \varepsilon^{k} \lambda_{q}^{(k)}(X, \tilde{t}),W_{0}=\sum_{k=1} \varepsilon^{k} w_{k}(X, \tilde{t}) \\ \varTheta_{0} =\sum_{k=1} \varepsilon^{k} \vartheta_{k}(X, \tilde{t}),H_{0}=\sum_{k=1} \varepsilon^{k} \eta_{k}(X, \tilde{t}) \end{array}\right\} \end{eqnarray}$

出于篇幅原因, 离散的动力学方程组不作呈现.满足各阶方程位移边界条件的试函数可以表示为

$\begin{eqnarray} \left.\begin{array}{l} W_{0}=\varepsilon A_{10}^{(1)}(\tilde{t}) \sin (m X)+O\left(\varepsilon^{4}\right) \\ \varTheta_{0}=\varepsilon B_{10}^{(1)}(\tilde{t}) \cos (m X)+O\left(\varepsilon^{4}\right) \\ H_{0}=\varepsilon C_{10}^{(1)}(\tilde{t}) \cos (m X)+O\left(\varepsilon^{4}\right) \\ \lambda_{q}=\left\{\varepsilon Q_{10}^{(1)}(\tilde{t}) +\varepsilon^{2}\left[Q_{10}^{(2)}(\tilde{t})+\dot{Q}_{10}^{(1)}(\tilde{t})\right] +\right. \\ \qquad \left. \varepsilon^{3}\left[Q_{10}^{(3)}(\tilde{t})+\ddot{Q}_{10}^{(1)}(\tilde{t})\right]\right\} \sin (m X)+O\left(\varepsilon^{4}\right) \end{array}\right\} \end{eqnarray}$

式中$m$表示模态阶数.

将式(28)代入各阶方程组, 并将$\tilde{t}$代换回$\tau $,可以得到横向载荷的三阶渐进表达式. 又由式(29)中的第一式可知$\varepsilon A_{10}^{\left(1 \right)} =W_{0} \left| {_{X=\pi /2} } \right.=W_{m} $,结合式(12)进行无量纲化, 再引入伽辽金积分, 可以得到后屈曲梁的无量纲动力方程

$\begin{eqnarray} &&g_{0} \ddot{W}_{m}+g_{4} \dot{W}_{m}+g_{1} W_{m}+g_{2} W_{m}^{2}+g_{3} W_{m}^{3} = \left\{\begin{array}{l} \left[g_{f}\left(W^{i}-W_{m}\right)^{{3}/{2}}\right]\\ \left[g_{f}\left(W^{i}-W_{m}\right)^{{3}/{2}}\right]_{\max }\left(\dfrac{\alpha-\alpha_{0}}{\alpha_{\max }-\alpha_{0}}\right)^{{5}/{2}} \end{array}\right. \end{eqnarray}$

将冲击器运动方程(15)进行无量纲化, 得到

$\begin{eqnarray} \ddot{{W}}^{i}-\tilde{{g}}=\left\{ {{\begin{array}{l} {\bar{{K}}_{c} \left( {W^{i}-W_{m} } \right)^{{3}/{2}}} \\ {\left[ {\bar{{K}}_{c} \left( {W^{i}-W_{m} } \right)^{{3}/{2}}} \right]_{\max } \left( {\dfrac{\alpha -\alpha_{0} }{\alpha_{\max } -\alpha _{0} }} \right)^{{5}/{2}}} \\ \end{array} }} \right. \end{eqnarray}$

式中$g_{i}$ $(i=0,1,2,3,4)$以及$g_{f} $, $\tilde{{g}}$, $\bar{{K}}_{c}$参见附录.

假设后屈曲梁的初始挠度和速度都为0, 联立方程 (30)和(31), 采用四阶龙格库塔法,再将所求结果量纲化, 可以得到梁的动力响应曲线、以及接触力的时程曲线.

3 数值结果与讨论

本节通过数值算例, 呈现FG-GRC后屈曲梁在温度为300 K时受到低速冲击后的一阶模态动力响应曲线以及接触力时程曲线.阻尼夹芯材料的弹性模量$E=20$ GPa,泊松比$\mu =0.3$, 密度$\rho =1.9\times 10^{-6}$ kg/mm$^{3}$, 黏弹性参数$c=5.066$ N$\cdot$s/mm$^{2}$, $j=c/2(1+\mu )$[30]. 聚甲基丙烯酸甲酯(PMMA)被选用作为复合材料基体.有关石墨烯材料和基体材料属性以及扩展Halpin-Tsai细观模型中的修正参数$\eta_{i}$ $(i=1,2,3$)的数值可参见文献[5,27,31]. 上面层复合材料采用五层层合结构,各层石墨烯体积分数分布为[0.11/0.09/0.07/0.05/0.03],而下面层中石墨烯的容积率分布采用[0.03/0.05/0.07/0.09/0.11].

3.1 算例验证

图2忽略小球重力, 计算了X型分布FG-GRC层合梁的接触力曲线并与文献[27]的结果进行对比.

本例中, 加载和卸载过程均采用式(13)的接触力表达. 梁的尺寸参数为$h=2$ mm,$b=h$, $L/h=10$, 环境温度为300 K, 冲击速度$v^{i}=3$ m/s.冲击器材料为$E^{i}=207$ GPa, $\mu^{i}=0.3$, $\rho^{i}=7960$ kg/m$^{3}$,其直径与梁的宽度$b$一致.10层GRC的主方向分别为[0/90/0/90/0]$_{s}$. 如图可见,尽管与文献[27]采用了不同的梁理论, 但计算的接触力曲线吻合得良好,验证了本文的材料模型、接触模型和计算方法的正确性.为确认后屈曲平衡路径解析公式的正确性,图3呈现了纤维增强复合材料梁的热后屈曲平衡路径,计算结果表明与文献[29]曲线吻合.

图2

图2X型FG-GRC梁的接触力时间历程曲线

Fig.2Contact force curves of X type FG-GRC beam


3.2 数值分析

本节首先忽略冲击器重力, 讨论冲击速度, 轴向压力,阻尼系数等对后屈曲梁的接触动力响应的影响规律, 随后考虑冲击器重力,研究二次碰撞的运动规律. 算例中, 梁的尺寸参数为$h=2$ mm, $b=2h$, $L/h=15$,冲击器材料参数除非特别说明, 与上节保持一致.各复合材料层的石墨烯主方向均为0$^\circ$.

图3

图3复合材料梁的后屈曲平衡路径

Fig.3Post-buckling equilibrium paths of composite beams


图4呈现了不同冲击速度下后屈曲梁的接触动力响应. 经计算得, $\Delta P=1.2\Delta P_{cr}$时的后屈曲挠度为0.635 mm. 如图4(a)可见,随着冲击速度的增大, 接触时间缩短, 接触力峰值增大. 当冲击速度从13.75 m/s增大到13.76 m/s时, 接触力曲线几乎完全重合, 但梁的运动轨迹发生分岔. 后屈曲梁从一个稳态跳跃到另一个稳态, 随后以之为平衡位置做衰减振动. 如图4(b)所示, 从$A$点到$B$点,后屈曲梁从初始后屈曲平衡位置运动到水平位置, 撞击动能几乎完全转化为阻尼损耗和应变能. 又由于$B$点附近是一段"准零刚度"区,回复力较小, 因此$A$-$B$-$C$以及$A$-$E$段的振动频率相比于冲击速度为10 m/s和15 m/s的$A$-$D$和$A$-$F$段小. 随着冲击速度从13.76 m/s继续增大, 梁作快速的跳跃, 衰减时间也缩短.

图4

图4冲击速度对接触动力响应的影响规律

Fig.4Effects of impact velocity on contact responses


图5呈现了不同轴向压力下的接触动力响应曲线. 如图5(a)所示, 不同轴压下的接触力时间历程曲线非常接近. 可见, 相比于梁的整体结构刚度,接触力对局部接触刚度更敏感, 而接触刚度取决于接触层和冲击器的材料属性, 与轴向压力的变化无关. 但是轴向压力的增加对梁的位移曲线有较大的影响, 由式(12)可知, 也会引起接触力的变化. 从接触力的局部放大图可见,轴向载荷越远离临界屈曲载荷, 接触力峰值越大. 原因在于, 轴向压力从零增大到使梁发生后屈曲的过程中, 结构整体刚度呈现先减小后增大的变化趋势(临界屈曲载荷时, 结构刚度最小为零刚度). 也因此, 由图5(b)可见, 轴向压力从零增大到临界屈曲载荷时, 梁的振幅和周期都增大. 当轴压$\Delta P=1.2\Delta P_{cr}$时, 梁从一个稳态跳跃到另一个稳态作衰减振动. 而当$\Delta P=1.8\Delta P_{cr}$时, 不发生跳跃失稳. 可见在后屈曲阶段,结构刚度与轴压呈正相关性. 特别地, 当$\Delta P=\Delta P_{cr}$时, 梁在受到冲击后的位移时间曲线呈现类蠕变特性. 这是由于此时梁处于零刚度不稳定状态, 当衰减振动能量耗散完全后, 不具有回复力使梁回到初始水平位置.

图5

图5轴向压力对接触动力响应的影响规律

Fig.5Effects of axial pressure on contact responses


图6呈现了黏弹性参数对后屈曲梁的接触动力响应的影响规律. 如图6(a)所示,由于阻尼特性的改变不影响局部接触刚度,不同结构阻尼下的接触力时间历程曲线十分接近.但是由于阻尼特性对梁的位移时间历程曲线有影响, 从局部放大图可见,黏弹性系数较大时, 接触力峰值较大. 如图6(b)所示,结构阻尼对梁在脱离接触后的自由振动影响较大. 结构阻尼较小时,后屈曲梁可能多次发生双稳态之间的跳跃. 而随着结构阻尼的增大, 跳跃发生的次数减少. 在整个振动的过程中, 后屈曲梁的刚度是在不断变化的,当朝向后屈曲梁的凹面振动时, 轴向压应力增大, 结构刚度减小, 振动频率降低, 幅值增大, 反之频率增大, 幅值减小.

图6

图6黏弹性阻尼对接触动力响应的影响规律

Fig.6Effects of damping on contact response


图7考虑冲击器重力, 研究了二次撞击下后屈曲梁的动力响应对冲击器材料属性变化的敏感性.对于首次碰撞, 如图7(a)~图7(c)所示,冲击器弹性模量$E^{i}$的变化对接触力以及梁和冲击器的位移时程曲线影响都较小.从局部放大图可见, $E^{i}$的增大使得接触力增加, 梁位移增大, 冲击器位移减小. 相比而言, 冲击器密度$\rho^{i}$的变化对冲击器和梁的位移影响较大,但是对接触力的影响依然有限.当$\rho^{i}$从5960 kg/m$^{3}$增大37%仅使得接触力提高了9.1%.对于二次碰撞, 如图7(a)所示, 相比于$\rho^{i}=5960$ kg/m$^{3}$的冲击器,$\rho^{i}=8160$ kg/m$^{3}$时二次碰撞接触力反而小, 这是因为这种情况下,梁在第一次碰撞后振幅较大, 二次碰撞时梁处于"准零刚度"位置. 也因此,即便二次碰撞接触力很小,也使得首次碰撞后未发生跳跃的梁在二次撞击后发生了稳态跳跃. 当$\rho^{i}=9960$ kg/m$^{3}$时, 梁在首次碰撞下就发生了稳态跳跃,因此两次碰撞的时间间隔较长.图7(b)和图7(d)中的$A$点为梁运动到水平位置的临界跳跃点,到达$B$点处, 冲击器追赶上梁发生二次碰撞. 由$C$点处接触力未归零知,第二次碰撞后冲击器与梁发生了黏合.

4 结论

本文推导了含黏弹性夹芯的FG-GRC后屈曲梁在低速冲击下的控制方程组.拓展了两步摄动-伽辽金法结合四阶龙格库塔法,研究了后屈曲梁在低速冲击下的动力响应特性, 得到下述结论.

(1)碰撞接触力关于冲击速度较为敏感,而受到轴向压力、阻尼效应以及冲击器材料的影响较小.

(2)受到结构阻尼的影响, 后屈曲梁在脱离接触后作衰减自由振动,其动力响应存在稳态之间的跳跃.

(3)后屈曲梁的结构刚度在运动过程中处于动态变化. 当朝向后屈曲梁的凹面振动时,刚度减小, 频率降低, 幅值增大, 反之频率增大, 幅值减小.

(4)对于跌落冲击问题, 虽然二次撞击的接触力大幅下降,但如果二次碰撞时梁处于"准零刚度"位置, 也可能造成梁在二次撞击后的稳态跳跃.

图7

图7冲击器材料对接触动力响应的影响规律

Fig.7Effects of impactor materials on contact responses


附录

式(27)中的系数表示为

$\begin{eqnarray} \left.\begin{array}{l} \dfrac{B_{10}^{\ast } }{A_{10}^{\ast } }=\dfrac{\left| {{\begin{array}{*{20}c} {-\left[ {\gamma_{4} +\gamma_{11} } \right]} & {\left[ {\gamma _{6} +\gamma_{14} } \right]} \\ {-\left[ {\gamma_{7} +\gamma_{12} } \right]} & {\left[ {\gamma _{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\left[ {\gamma_{5} +\gamma_{13} } \right]} & {\left[ {\gamma_{6} +\gamma_{14} } \right]} \\ {\left[ {\gamma_{8} +\gamma_{14} } \right]} & {\left[ {\gamma_{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|}\\ \dfrac{C_{10}^{\ast } }{A_{10}^{\ast } }=\dfrac{\left| {{\begin{array}{*{20}c} {\left[ {\gamma_{5} +\gamma_{13} } \right]} & {-\left[ {\gamma _{4} +\gamma_{11} } \right]} \\ {\left[ {\gamma_{8} +\gamma_{14} } \right]} & {-\left[ {\gamma_{7} +\gamma_{12} } \right]} \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\left[ {\gamma_{5} +\gamma_{13} } \right]} & {\left[ {\gamma_{6} +\gamma_{14} } \right]} \\ {\left[ {\gamma_{8} +\gamma_{14} } \right]} & {\left[ {\gamma_{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|} \end{array}\right\} \end{eqnarray}$

式(31)中的系数表示为

$\begin{eqnarray} g_{f} =\dfrac{2K_{c} L^{7/2}}{D_{0} \pi^{4}},\\ \tilde{{g}}=\dfrac{gLI_{0} }{\pi^{2}Q_{0} },\\ \bar{{K}}_{c} =-\dfrac{L^{{5}/{2}}K_{c} I_{0} }{m\pi^{2}Q_{0} }\\ \end{eqnarray}$

$\begin{eqnarray} \left.\begin{array}{l} g_{0} =\varPsi_{0} +m^{2}\varPsi_{4} +m\varPsi_{5} \dfrac{\ddot{{B}}_{10}^{\left( 1 \right)} }{\ddot{{A}}_{10}^{\left( 1 \right)} }+m\varPsi_{6} \dfrac{\ddot{{C}}_{10}^{\left( 1 \right)} }{\ddot{{A}}_{10}^{\left( 1 \right)} } \\ g_{1} =\left[ {\gamma_{10} -\lambda_{P} +m^{2}\gamma_{1} +3\gamma_{0} \left( {\dfrac{m\pi W_{m}^{\ast } }{2}} \right)^{2}} \right]m^{2}+\\ \qquad \left[ {\gamma_{11} m+\gamma_{2} m^{3}} \right]\dfrac{B_{10}^{\left( 1 \right)} }{A_{10}^{\left( 1 \right)} }+\left[ {\gamma_{12} m+\gamma_{3} m^{3}} \right]\dfrac{C_{10}^{\left( 1 \right)} }{A_{10}^{\left( 1 \right)} }\\ g_{2} =-\dfrac{3\pi^{2}\gamma_{0} m^{4}W_{m}^{\ast } }{4} \\ g_{3} =\dfrac{\gamma_{0} \pi^{2}m^{4}}{4} \\ g_{4} =\lambda \left[\left(\bar{{\gamma }}_{10} m^{2}+m^{4}\bar{{\gamma }}_{1} \right)+\left( {\bar{{\gamma }}_{11} m+\bar{{\gamma }}_{2} m^{3}} \right)\dfrac{\dot{{B}}_{10}^{\left( 1 \right)} }{\dot{{A}}_{10}^{\left( 1 \right)} } +\right. \\ \qquad\left. \left( {\bar{{\gamma }}_{12} m+\bar{{\gamma }}_{3} m^{3}} \right)\dfrac{\dot{{C}}_{10}^{\left( 1 \right)} }{\dot{{A}}_{10}^{\left( 1 \right)}} \right] \\ \end{array}\right \} \end{eqnarray}$

式中

$\begin{eqnarray} &&\dfrac{B_{10}^{\left( 1 \right)} }{A_{10}^{\left( 1 \right)} }=\dfrac{\left| {{\begin{array}{*{20}c} {-\left[ {m^{3}\gamma_{4} +m\gamma_{11} } \right]} & {\left[ {m^{2}\gamma_{6} +\gamma_{14} } \right]} \\ {-\left[ {m^{3}\gamma_{7} +m\gamma_{12} } \right]} & {\left[ {m^{2}\gamma_{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\left[ {m^{2}\gamma_{5} +\gamma_{13} } \right]} & {\left[ {m^{2}\gamma_{6} +\gamma_{14} } \right]} \\ {\left[ {m^{2}\gamma_{8} +\gamma_{14} } \right]} & {\left[ {m^{2}\gamma_{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|}\\ \end{eqnarray}$

$\begin{eqnarray} &&\dfrac{C_{10}^{\left( 1 \right)} }{A_{10}^{\left( 1 \right)} }=\dfrac{\left| {{\begin{array}{*{20}c} {\left[ {m^{2}\gamma_{5} +\gamma_{13} } \right]} & {-\left[ {m^{3}\gamma_{4} +m\gamma_{11} } \right]} \\ {\left[ {m^{2}\gamma_{8} +\gamma_{14} } \right]} & {-\left[ {m^{3}\gamma_{7} +m\gamma_{12} } \right]} \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\left[ {m^{2}\gamma_{5} +\gamma_{13} } \right]} & {\left[ {m^{2}\gamma_{6} +\gamma_{14} } \right]} \\ {\left[ {m^{2}\gamma_{8} +\gamma_{14} } \right]} & {\left[ {m^{2}\gamma_{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|}\\ \end{eqnarray}$

$\begin{eqnarray} &&\dfrac{\dot{{B}}_{10}^{\left( 1 \right)} }{\dot{{A}}_{10}^{\left( 1 \right)} }=\dfrac{\left| {{\begin{array}{*{20}c} {-\left[ {m^{3}\bar{{\gamma }}_{4} +m\bar{{\gamma }}_{11} } \right]} & {\left[ {m^{2}\bar{{\gamma }}_{6} +\bar{{\gamma }}_{14} } \right]} \\ {-\left[ {m^{3}\bar{{\gamma }}_{7} +m\bar{{\gamma }}_{12} } \right]} & {\left[ {m^{2}\bar{{\gamma }}_{9} +\bar{{\gamma }}_{15} } \right]} \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\left[ {m^{2}\bar{{\gamma }}_{5} +\bar{{\gamma }}_{13} } \right]} & {\left[ {m^{2}\bar{{\gamma }}_{6} +\bar{{\gamma }}_{14} } \right]} \\ {\left[ {m^{2}\bar{{\gamma }}_{8} +\bar{{\gamma }}_{14} } \right]} & {\left[ {m^{2}\bar{{\gamma }}_{9} +\bar{{\gamma }}_{15} } \right]} \\ \end{array} }} \right|} \end{eqnarray}$

$\begin{eqnarray} &&\dfrac{\dot{{C}}_{10}^{\left( 1 \right)} }{\dot{{A}}_{10}^{\left( 1 \right)} }=\dfrac{\left| {{\begin{array}{*{20}c} {\left[ {m^{2}\bar{{\gamma }}_{5} +\bar{{\gamma }}_{13} } \right]} & {-\left[ {m^{3}\bar{{\gamma }}_{4} +m\bar{{\gamma }}_{11} } \right]} \\ {\left[ {m^{2}\bar{{\gamma }}_{8} +\bar{{\gamma }}_{14} } \right]} & {-\left[ {m^{3}\bar{{\gamma }}_{7} +m\bar{{\gamma }}_{12} } \right]} \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\left[ {m^{2}\gamma_{5} +\gamma_{13} } \right]} & {\left[ {m^{2}\bar{{\gamma }}_{6} +\bar{{\gamma }}_{14} } \right]} \\ {\left[ {m^{2}\gamma_{8} +\gamma_{14} } \right]} & {\left[ {m^{2}\gamma_{9} +\gamma_{15} } \right]} \\ \end{array} }} \right|}\\ \end{eqnarray}$

\begin{eqnarray} &&\dfrac{\ddot{{B}}_{10}^{\left( 1 \right)} }{\ddot{{A}}_{10}^{\left( 1 \right)} }=\dfrac{\left| {{\begin{array}{*{20}c} {-m\varPsi_{5} } & {\varPsi_{8} } \\ {-m\varPsi_{6} } & {\varPsi_{9} } \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\varPsi_{7} } & {\varPsi_{8} } \\ {\varPsi_{8} } & {\varPsi_{9} } \\ \end{array} }} \right|},\dfrac{\ddot{{C}}_{10}^{\left( 1 \right)} }{\ddot{{A}}_{10}^{\left( 1 \right)} }=\dfrac{\left| {{\begin{array}{*{20}c} {\varPsi_{7} } & {-m\varPsi_{5} } \\ {\varPsi_{8} } & {-m\varPsi_{6} } \\ \end{array} }} \right|}{\left| {{\begin{array}{*{20}c} {\varPsi_{7} } & {\varPsi_{8} } \\ {\varPsi_{8} } & {\varPsi_{9} } \\ \end{array} }} \right|} \end{eqnarray}$

参考文献

Garcia-Macias E , Rodriguez-Tembleque L , Saez A .

Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates

Composite Structures, 2017 , 186 : 123 - 138

[本文引用: 1]

Jia H , Kong QQ , Liu Z , et al .

3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band

Composites Part A: Applied Science and Manufacturing, 2020 , 129 : 105712

Zhang T , Kumari L , Du GH , et al .

Mechanical properties of carbon nanotube--alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering

Composites Part A: Applied Science and Manufacturing, 2009 , 40 ( 1 ): 86 - 93

[本文引用: 1]

戴婷 , 戴宏亮 , 李军剑 .

含孔隙变厚度 FG 圆板的湿热力学响应

力学学报, 2019 , 51 ( 2 ): 512 - 523 .

[本文引用: 1]

( Dai Ting , Dai Hongliang , Li Junjian , et al .

Hygrothermal mechanical behavior of a FG circular plate with variable thickness

Chinese Jounal of Theoretical and Applied Mechanics , 2019 , 51 ( 2 ): 512 - 523 (in Chinese))

[本文引用: 1]

Shen HS , Xiang Y , Lin F .

Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments

Computer Methods in Applied Mechanics and Engineering, 2017 , 319 : 175 - 193

[本文引用: 4]

Dong YH , He LW , Wang L , et al .

Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study

Aerospace Science and Technology, 2018 , 82 : 466 - 478

[本文引用: 1]

Shen HS , Lin F , Xiang Y .

Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments

Nonlinear Dynamics, 2017 , 90 ( 2 ): 899 - 914

Javani M , Kiani Y , Eslami MR .

Thermal buckling of FG graphene platelet reinforced composite annular sector plates

Thin-Walled Structures, 2020 , 148 : 106589

9] Foroutan K , Shaterzadeh A , Ahmadi H .

Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells

Applied Mathematical Modelling, 2020 , 77 : 539 - 553

Huang X , Gao K , Yang J .

Fracture analysis of functionally graded multilayer graphene nanoplatelets-reinforced composite strips. European Journal of Mechanics-A/

Solids, 2020 : 104038

Dong YH , Zhu B , Wang Y , et al .

Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load

Journal of Sound and Vibration, 2018 , 437 : 79 - 96

Shen HS , Reddy JN , Yu Y .

Postbuckling of doubly curved FG-GRC laminated panels subjected to lateral pressure in thermal environments

Mechanics of Advanced Materials and Structures, 2019 , doi: 10.1080/15376494.2018.1556827

[本文引用: 1]

蓝春波 , 秦卫阳 .

带碰撞双稳态压电俘能系统的俘能特性研究

物理学报, 2015 , 64 ( 21 ): 183 - 194 .

[本文引用: 1]

( Lan Chunbo , Qin Weiyang .

Energy harvesting properties of a bistable piezoelectric trapped energy system with collision

Acta Physica Sinica , 2015 , 64 ( 21 ): 183 - 194 (in Chinese))

[本文引用: 1]

Tang Y , Chi Y , Sun J , et al .

Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots

Science Advances, 2020 , 6 ( 19 ): eaaz6912

[本文引用: 1]

王计真 , 刘小川 .

预加载复合材料层合薄板低速冲击理论分析

应用力学学报, 2018 , 35 ( 6 ): 1248 - 1253, 1418 .

[本文引用: 1]

( Wang Jizhen , Liu Xiaochuan .

Theoretical analysis of low velocity impact of preloaded composite laminates

Chinese Journal of Applied Mechanics , 2018 , 35 ( 6 ): 1248 - 1253, 1418 (in Chinese))

[本文引用: 1]

张思进 , 文桂林 .

冲击作用下复合材料叠层板层间开裂演化模型,

力学学报, 2011 , 43 ( 2 ): 338 - 345 .

( Zhang Sijin , Wen Guilin .

Evolution model of interlaminar cracking of composite laminates under impact

Chinese Journal of Theoretical and Applied Mechanics , 2011 , 43 ( 2 ): 338 - 345 (in Chinese))

张洁皓 , 段玥晨 , 侯玉亮 .

基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法

力学学报, 2019 , 51 ( 5 ): 1411 - 1423 .

( Zhang Jiehao , Duan Yuechen , Hou Yuliang , et al .

Multi-scale method of plain woven composites subjected to low velocity impact based on asymptotic homogenization

Chinese Journal of Theoretical and Applied Mechanics , 2019 , 51 ( 5 ): 1411 - 1423 (in Chinese))

杨正茂 , 刘晖 , 杨俊杰 .

含热冲击预损伤的陶瓷基复合材料损伤本构模型

力学学报, 2019 , 51 ( 6 ): 1797 - 1809 .

( Yang Zhengmao , Liu Hui , Yang Junjie .

Damage constitutive model for thermal shocked-ceramic matrix composite

Chinese Journal of Theoretical and Applied Mechanics , 2019 , 51 ( 6 ): 1797 - 1809 (in Chinese))

Song M , Li X , Kitipornchai S , et al .

Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates

Nonlinear Dynamics, 2019 , 95 ( 3 ): 2333 - 2352

Salami SJ .

Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on extended high order sandwich panel theory

Aerospace Science and Technology, 2017 , 66 : 165 - 176

Wu L , Wang W , Jiang Q , et al .

Illustrating hybrid effect and damage evolution of carbon/aramid braided composite under low-velocity impact

Composite Structures, 2020 : 112372

[本文引用: 1]

刘艮 , 张伟 .

亚音速气流中复合材料悬臂板的非线性振动响应研究

力学学报, 2019 , 51 ( 3 ): 912 - 921 .

[本文引用: 1]

( Liu Gen , Zhang Wei .

Nonlinear vibrations of composite cantilever plate in subsonic air flow

Chinese Journal of Theoretical and Applied Mechanics , 2019 , 51 ( 3 ): 912 - 921 (in Chinese))

[本文引用: 1]

刘人怀 , 薛江红 .

复合材料层合板壳非线性力学的研究进展,

力学学报, 2017 , 49 ( 3 ): 487 - 506 .

[本文引用: 1]

( Liu Renhuai , Xue Jianghong .

Development of nonlinear mechanics for laminated composite plates and shells

Chinese Journal of Theoretical and Applied Mechanics , 2017 , 49 ( 3 ): 487 - 506 (in Chinese))

[本文引用: 1]

Xie F , Qu Y , Zhang W , et al .

Nonlinear aerothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory

International Journal of Mechanical Sciences, 2019 , 150 : 226 - 237

[本文引用: 1]

Shen HS .

Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, Part I: Theory and solutions

Composite Structures, 2015 , 125 : 698 - 705

[本文引用: 1]

周加喜 , 邓子辰 .

夹层梁低速冲击下的接触定律与结构响应

力学学报, 2009 , 41 ( 1 ): 113 - 121 .

[本文引用: 1]

( Zhou Jiaxi , Deng Zichen .

Contact law and structural response of sandwich beams under low velocity impact

Chinese Journal of Theoretical and Applied Mechanics , 2009 , 41 ( 1 ): 113 - 121 (in Chinese))

[本文引用: 1]

Fan Y , Xiang Y , Shen HS , et al .

Low-velocity impact response of FG-GRC laminated beams resting on visco-elastic foundations

International Journal of Mechanical Sciences, 2018 , 141 : 117 - 126

[本文引用: 4]

Jin QD , Hu X , Ren YR , et al. On static and dynamic snap-throughs of the imperfect post-buckled FG-GRC sandwich beams. Journal of Sound and Vibration , 2020 , in Press, doi: 10.1016/J.jsv.2020.115684

[本文引用: 1]

Jin Q , Ren Y , Peng F , et al .

Imperfection sensitivity of free vibration of symmetrically/anti-symmetrically laminated FRC beams in thermally pre-and post-buckling equilibrium states

Acta Astronautica, 2020 , 173 : 240 - 251

[本文引用: 2]

Kristensen RF , Nielsen KL , Mikkelsen LP .

Numerical studies of shear damped composite beams using a constrained damping layer

Composite Structures, 2008 , 83 ( 3 ): 304 - 311

[本文引用: 1]

Phuong NT , Nam VH , Trung NT , et al .

Thermomechanical postbuckling of functionally graded graphene-reinforced composite laminated toroidal shell segments surrounded by Pasternak's elastic foundation

Journal of Thermoplastic Composite Materials, 2019 , ( 15 ): 089270571987059

[本文引用: 1]

/

Baidu
map