低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型
A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION
-
摘要:本文首次从解析角度建立了低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 首先,结合经典层合板理论和冯\cdot卡门假设,建立了嵌入黏弹性芯层的纤维金属混杂层合板弹性损伤本构关系. 然后,将层合板受冲击时的变形分成接触和拉伸两个区域,在接触区域内,对金属层采用 Von Mises 失效准则,纤维层采用 Tsai-Hill 失效准则和对黏弹性层采用指数 Drucker-Prager 失效准则判断层合板损伤情况. 考虑不同材料层对冲击动态响应的贡献来修正两个变形区域的位移公式,进而计算结构因弹性变形产生的应变能,以及接触区域因塑性变形消耗的能量,实现每次失效事件发生后各层材料的能量、位移和冲击接触力的理论求解,并给出了结构动态响应分析的具体流程图. 最后,以嵌入 Zn33 黏弹性芯层的 TA2 钛合金混杂 T300 碳纤维/树脂层合板为研究对象,开展落锤冲击实验. 验证结果表明,理论预测与测试获得的冲击接触力、位移响应以及冲击载荷-位移曲线吻合较好,且关注的峰值点计算误差最大不超过 9%,进而验证了所提出的理论模型的有效性.Abstract:A dynamic response prediction model of fiber-metal hybrid laminated plates embedded with a viscoelastic damping core under low-velocity impact excitation is established analytically for the first time in this research. Firstly, based on the classical laminates theory and von Kármán theory, the constitutive relation of elastic damage of fiber-metal hybrid laminated plates embedded with a viscoelastic damping core is established. Then, the deformation of laminated plates under impact is divided into contact and stretching areas. Within the contact areas, Von Mises failure criteria are used for metal layers, Tsay-Hill failure criteria for fiber layers and Drucker-Prager failure criteria for viscoelastic layer to determine the damage of laminated plates. Considering the contribution of different material layers to the dynamic response subjected to the impact load for modifying the displacement formula, the theoretical solutions of energy, displacement and impact contact force in each layer of such laminated plates are obtained after each failure event occurs, and gives the flow chart of structure dynamic response analysis of concrete. Finally, a TA2 titanium alloy and T300 fiber/epoxy hybrid plate embedded with the Zn33 viscoelastic core is taken as the research object to carry out the drop-weight impact test. The theoretical prediction results of the impact contact force, displacement response, and impact load-displacement curve are found to agree well with the measured ones. Besides, the maximum calculation errors of the concerned peaks are less than 9%. Thus, the effectiveness of the proposed theoretical model has been verified.