EI、Scopus 收录
中文核心期刊
快速检索
年期检索
高级检索
所有
标题
作者
关键词
摘要
DOI
栏目
作者地址
基金
中图分类号
首页
关于我们
期刊简介
期刊荣誉
数据库收录
编委会
现任编委会
历届编委会
期刊导读
最新录用
预出版
当期文章
过刊浏览
下载排行
浏览排行
引用排行
高级检索
创刊60周年
出版道德准则
下载中心
期刊动态
联系我们
English
力学期刊网
所有
标题
作者
关键词
摘要
DOI
栏目
地址
基金
中图分类号
首页
关于我们
期刊简介
期刊荣誉
数据库收录
编委会
现任编委会
历届编委会
期刊导读
最新录用
预出版
当期文章
过刊浏览
下载排行
浏览排行
引用排行
高级检索
创刊60周年
出版道德准则
下载中心
期刊动态
联系我们
English
力学期刊网
路见可. 关于周期应力平面弹性基本问题[J]. 力学学报, 1964, 7(4): 316-327.
DOI:
10.6052/0459-1879-1964-4-1964-027
引用本文:
路见可. 关于周期应力平面弹性基本问题[J]. 力学学报, 1964, 7(4): 316-327.
DOI:
10.6052/0459-1879-1964-4-1964-027
关于周期应力平面弹性基本问题
路见可
摘要
HTML全文
图
(0)
表
(0)
参考文献
(0)
相关文章
施引文献
资源附件
(0)
摘要
摘要:
本文考虑了一般的平面弹性同题,只假定应力是周期的而且有界.除此之外,无论对一个周期带中所含孔的个数或其边界的形状以及对孔边或无穷远处的应力,都不作其他限制.文中把函数的多值部分与非周期部分分离出来,得到了它们的一般表达式;证明了这时位移必定是准周期的,并指出了第一、第二基本问题的一般提法.对于有周期直线裂缝(在与周期方向平行的一直线上)的情况,本文利用周期Riemann边值问题的解法作出了解答;并对一个周期带中只有一个裂缝的特殊情况,把解写成了完全确定的有限形式.
HTML全文
参考文献
(0)
参考文献
(0)
相关文章
施引文献
资源附件
(0)
/
下载:
全尺寸图片
幻灯片
返回文章
分享
用微信扫码二维码
分享至好友和朋友圈
返回
×
Close
导出文件
文件类别
RIS(可直接使用Endnote编辑器进行编辑)
Bib(可直接使用Latex编辑器进行编辑)
Txt
引用内容
引文——仅导出文章的Citation信息
引文和摘要——导出文章的Citation信息和文章摘要信息
×
Close
引用参考文献格式
map