EI、Scopus 收录
中文核心期刊
邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44(5): 904-911. DOI:10.6052/0459-1879-12-033
引用本文: 邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44(5): 904-911.DOI:10.6052/0459-1879-12-033
Xing Yufeng, Guo Jing. A SELF-ADAPTIVE NEWMARK METHOD WITH PARAMETERS DEPENDENT UPON STRUCTURAL DYNAMIC CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 904-911. DOI:10.6052/0459-1879-12-033
Citation: Xing Yufeng, Guo Jing. A SELF-ADAPTIVE NEWMARK METHOD WITH PARAMETERS DEPENDENT UPON STRUCTURAL DYNAMIC CHARACTERISTICS[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 904-911.DOI:10.6052/0459-1879-12-033

与结构动特性协同的自适应Newmark方法

A SELF-ADAPTIVE NEWMARK METHOD WITH PARAMETERS DEPENDENT UPON STRUCTURAL DYNAMIC CHARACTERISTICS

  • 摘要:提出了一种与结构动特性协同的自适应Newmark方法,其参数可基于数值弥散和数值耗散最小化的条件用解析方法求得.对线性单自由度动力学系统,该方法的相位误差精确为零并且谱半径为1.对线性多自由度系统和非线性系统,该方法在所有二阶积分解法中最精确.数值结果验证了新提出格式的高精度和结论.

    Abstract:This paper presents a self-adaptive Newmark method whose parameters are dependent upon the structural dynamic characteristics,and the parameters can be analytically determined based on the conditions of minimizing the numerical dispersion and dissipation.The phase error of the proposed method is exactly zero for linear single degree-of-freedom (DOF) dynamic system.Moreover,the proposed method is the most accurate method among the second order integration methods for multi-DOF system and nonlinear system.Numerical simulations validate the present method and the theoretical results.

/

    返回文章
    返回
      Baidu
      map