EI、Scopus 收录
中文核心期刊
郭强, 郭杏林, 樊俊铃, 侯培军, 吴承伟. 基于固有耗散的材料疲劳性能快速评估方法[J]. 力学学报, 2014, 46(6): 931-939. DOI:10.6052/0459-1879-14-139
引用本文: 郭强, 郭杏林, 樊俊铃, 侯培军, 吴承伟. 基于固有耗散的材料疲劳性能快速评估方法[J]. 力学学报, 2014, 46(6): 931-939.DOI:10.6052/0459-1879-14-139
Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. DOI:10.6052/0459-1879-14-139
Citation: Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939.DOI:10.6052/0459-1879-14-139

基于固有耗散的材料疲劳性能快速评估方法

AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION

  • 摘要:材料疲劳损伤的累积过程是一个伴随着温度变化的能量耗散过程. 相比于疲劳过程中试件的局部温升,固有耗散是材料能量变化的直接反映,与材料微观结构演化联系也更为紧密,因此以材料的固有耗散作为疲劳损伤指标具有更加明确的物理意义. 基于对试件表面温升的一维双指数回归,构建了一种材料固有耗散的计算模型,并在此基础上提出了一种快速评估材料疲劳性能的能量方法. 利用该能量方法,对FV520B 钢的疲劳性能进行了实验研究,并对实验结果进行了分析与对比,从而证明了该能量方法及计算模型的可行性和有效性.

    Abstract:The process of fatigue damage accumulation is an energy dissipation process accompanied with temperature variation. Compared with the local temperature rise in fatigue process, intrinsic dissipation is a direct reflection of material energy change, is related to the material microstructure evolution more closely, and has more definite physical meaning to be taken as a fatigue indicator. Based on a one-dimensional double exponential regression of the specimen surface temperature rise, a calculation model of intrinsic dissipation is established in this paper. On this basis, an energy approach for rapid evaluation of fatigue behavior is proposed. Utilizing this energy approach, the fatigue behavior of FV520B stainless steel has been experimentally studied. The analyses and comparisons of experimental results prove the feasibilities and validities of the energy approach and calculation model.

/

    返回文章
    返回
      Baidu
      map