EI、Scopus 收录
中文核心期刊
栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理[J]. 力学学报, 2018, 50(5): 1206-1218. DOI:10.6052/0459-1879-18-081
引用本文: 栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理[J]. 力学学报, 2018, 50(5): 1206-1218.DOI:10.6052/0459-1879-18-081
Li Jianqiao, Ma Tianbao, Ning Jianguo. MECHANISM OF EXPLOSION-INDUCED DISTURBANCE IN NATURAL MAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1206-1218. DOI:10.6052/0459-1879-18-081
Citation: Li Jianqiao, Ma Tianbao, Ning Jianguo. MECHANISM OF EXPLOSION-INDUCED DISTURBANCE IN NATURAL MAGNETIC FIELD[J].Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1206-1218.DOI:10.6052/0459-1879-18-081

爆炸对自然磁场干扰机理

MECHANISM OF EXPLOSION-INDUCED DISTURBANCE IN NATURAL MAGNETIC FIELD

  • 摘要:爆炸产生的电磁场对爆炸测试有较明显的干扰, 一些含金属炸药产生的电磁干扰甚至可以使设备失效, 为了给出爆炸产生电磁效应的理论分析方法和特性, 针对常规炸药爆炸过程中观察到的自然磁场扰动现象进行理论机理和数值模拟研究. 采用热平衡电离理论描述爆炸过程中产生的电离气体, 结合爆炸问题的数值模拟方法, 获得爆炸场中电导率的时空分布, 计算磁场扩散率; 基于非理想全磁流体力学方程求解一定磁扩散率下等离子体高速运动引起的自然磁场扰动, 实现爆炸产生磁场效应的二维模拟; 对比炸药不同起爆条件对产生磁场扰动的影响, 结果表明: 炸药起爆参数对磁场扰动有很大的影响, 这种影响源自于电导率的巨大差异, 虽然爆轰产物的高速运动有引起磁场大幅度扰动的能力, 然而只有具有一定电导率的爆轰气体才能冻结磁场扰动. 数值模拟结果与文献中的结果进行了对比, 模拟得到的由电磁波引起的磁场扰动在时间尺度上与文献结果符合较好, 从一定程度上证明了数值模拟方法的可靠性. 本文的数值模拟结果指出炸药几何构型不对称的时候, 在自然磁场取不同方向时将会产生不同的磁场扰动强度, 而这是目前该领域中尚且无人关注和讨论过的问题.

    Abstract:Electromagnetic effect generated by explosions has a significant influence on the explosion test. Some metallized explosives even disable the electronic equipment. The mechanism and numerical simulations are investigated to the magnetic disturbance of natural magnetic field observed during the conventional explosion for getting the theoretical model and the properties of the explosion-induced electromagnetic effect. The mechanism of the generated magnetic disturbance is proposed based on a thermodynamic equilibrium ionization model and the magnetic hydrodynamic (MHD) model considering magnetic diffusion. The magnetic disturbance is considered to be induced by the motion of the conductive detonation products in the geomagnetic field. The conductivity, which makes direct influence on the disturbance duration, is described by the ionization model. Combined with the MHD governing equations and the method utilized in explosion issues, two kinds of numerical simulations are performed to investigate the magnetic disturbance during explosions of rectangular explosive in different initial magnetic fields. It is found that the magnetic disturbances are extremely different in value while almost the same in distribution. The distributions of fluid and magnetic parameters are compared at the same time and a conclusion can be obtained that the same distribution of conductivity leads to a similar distribution of magnetic field. The conductivity of detonation products has a huge difference in space distribution and this makes the magnetic field diffused except in the region with high conductivity. Therefore, obvious magnetic disturbance can be only observed in the region of high conductivity. The difference of magnetic field in value is related to both the initial magnetic field and velocity of fluid and can be only extremely observed in the early stage of explosion. A magnetic disturbance induced by the electromagnetic wave generated in the explosion is simulated and compared with the result in reference. The comparison shows a good agreement in the time duration scale of the magnetic disturbance, which proves the reliability of the numerical method used in this paper. The influence of the configuration of explosives in the geomagnetic field on the magnetic disturbance is first considered and the difference in the magnetic disturbance is predicted. The above achievement has not been reported in the previous published investigations. The prediction proposed in this paper needs a further experimental verification and this will be the next stage of our investigation.

/

    返回文章
    返回
      Baidu
      map