EI、Scopus 收录
中文核心期刊
周清甫. Stokes波的对称分叉[J]. 力学学报, 1992, 24(1): 32-39. DOI:10.6052/0459-1879-1992-1-1995-708
引用本文: 周清甫. Stokes波的对称分叉[J]. 力学学报, 1992, 24(1): 32-39.DOI:10.6052/0459-1879-1992-1-1995-708
SYMMETRIC BIFURCATION OF STOKES WATER WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 32-39. DOI:10.6052/0459-1879-1992-1-1995-708
Citation: SYMMETRIC BIFURCATION OF STOKES WATER WAVES[J].Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 32-39.DOI:10.6052/0459-1879-1992-1-1995-708

Stokes波的对称分叉

SYMMETRIC BIFURCATION OF STOKES WATER WAVES

  • 摘要:从四阶Zakharov方程出发修改了Saffman & Yuen的理论,消除了他们关于调制波数p~2+q~2《1的假定,得到丁较之合理的三维分叉波形,该波形与Su的试验结果和Meiron等人的数值结果是一致的。研究结果说明对称分叉是由于ClassⅡ不稳定性所诱发的。

    Abstract:Using the fourth-order Zakharov equation the theory of bifurcation by Sa-ffman & Yuen is extended to include the case where the modulation wavelength (p,q) = 0(1). Reasonable three-dimensional symmetrical wave patterns bifurcated from Stokes waves are obtained, and are in good agreement with those given by numerical results by Mclean (1982). Both critical amplitude and modulation wavelength are calculated. They are also close to the experimental data by Su (1981).

/

    返回文章
    返回
      Baidu
      map