EI、Scopus 收录
中文核心期刊
隋允康, 杨德庆, 孙焕纯. 最优目标敏度紧系的桁架几何两步优化方法[J]. 力学学报, 1997, 29(4): 470-475. DOI:10.6052/0459-1879-1997-4-1995-253
引用本文: 隋允康, 杨德庆, 孙焕纯. 最优目标敏度紧系的桁架几何两步优化方法[J]. 力学学报, 1997, 29(4): 470-475.DOI:10.6052/0459-1879-1997-4-1995-253
TRUSS GEOMETRY OPTIMIZATION BASED ON TWO STEP METHOD LINKED WITH SENSITIVITY OF OPTIMAL OBJECTIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 470-475. DOI:10.6052/0459-1879-1997-4-1995-253
Citation: TRUSS GEOMETRY OPTIMIZATION BASED ON TWO STEP METHOD LINKED WITH SENSITIVITY OF OPTIMAL OBJECTIVE[J].Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 470-475.DOI:10.6052/0459-1879-1997-4-1995-253

最优目标敏度紧系的桁架几何两步优化方法

TRUSS GEOMETRY OPTIMIZATION BASED ON TWO STEP METHOD LINKED WITH SENSITIVITY OF OPTIMAL OBJECTIVE

  • 摘要:对于桁架几何优化问题,采用由最优敏度紧系的序列两步优化解法:在完成截面优化之后,求出其最优目标对节点坐标变量的一、二阶导数,以此构造形状优化模型,对较难建模和求解的第二步问题建立了近似显式并能用二次规划有效地求解,取得了满意的结果.

    Abstract:The problem of the truss geometry optimization is solved by a sequential two step method. After finishing cross section optimization the first and second order derivatives of optimum objective with respect to nodal coordinate variables are calculated to construct a model of the shape optimization. Therefore, an approximate explicit formulation is established to overcome the difficulty of forming the optimization model of the second subproblem. It is easily solved by the sequential quadratic program algori...

/

    返回文章
    返回
      Baidu
      map