EI、Scopus 收录
中文核心期刊
岑章志, 徐秉业. Galerkin边界元法用于弹塑性分析的准高次元方法[J]. 力学学报, 1997, 29(6): 745-750. DOI:10.6052/0459-1879-1997-6-1995-293
引用本文: 岑章志, 徐秉业. Galerkin边界元法用于弹塑性分析的准高次元方法[J]. 力学学报, 1997, 29(6): 745-750.DOI:10.6052/0459-1879-1997-6-1995-293
QUASI-HIGH ORDER GALERKIN BEM FOR ELASTO-PLASTIC ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 745-750. DOI:10.6052/0459-1879-1997-6-1995-293
Citation: QUASI-HIGH ORDER GALERKIN BEM FOR ELASTO-PLASTIC ANALYSIS[J].Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 745-750.DOI:10.6052/0459-1879-1997-6-1995-293

Galerkin边界元法用于弹塑性分析的准高次元方法

QUASI-HIGH ORDER GALERKIN BEM FOR ELASTO-PLASTIC ANALYSIS

  • 摘要:提出了一种适用于Galerkin边界元法的高次单元插值方法和半解析半数值的积分方法准高次元法,建立了有关数值模型和将该方法应用于结构弹塑性分析的算法模型.有关算例结果表明,本文建议的方法是切实可行的.

    Abstract:A two-stage interpolation Galerkin boundary element method called the Quasi-High Order Element Method (QHOEM) is proposed for solving elastoplastic problems. In the initial stage, it uses high order elements to interpolate the coordinates and the variables. For the numerical integration involved, it further uses interpolation to decompose the high order elements into low order elements so that the existing analytical integration formulas can be applied. By doing this, the proposed method yields good adaptab...

/

    返回文章
    返回
      Baidu
      map