EI、Scopus 收录
中文核心期刊
高经武, 蔡中民, 李庆士, 武际可. 一类非自治动力系统超次谐周期解的不存在性[J]. 力学学报, 2004, 36(5): 629-633. DOI:10.6052/0459-1879-2004-5-2003-523
引用本文: 高经武, 蔡中民, 李庆士, 武际可. 一类非自治动力系统超次谐周期解的不存在性[J]. 力学学报, 2004, 36(5): 629-633.DOI:10.6052/0459-1879-2004-5-2003-523
Nonexistence of ultra-subharmonic periodic solutions for a class of nonautonomous dynamic system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5): 629-633. DOI:10.6052/0459-1879-2004-5-2003-523
Citation: Nonexistence of ultra-subharmonic periodic solutions for a class of nonautonomous dynamic system[J].Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5): 629-633.DOI:10.6052/0459-1879-2004-5-2003-523

一类非自治动力系统超次谐周期解的不存在性

Nonexistence of ultra-subharmonic periodic solutions for a class of nonautonomous dynamic system

  • 摘要:在非线性动力系统的研究中,Melnikov函数被广泛地用来作为微扰哈密顿系统是否发生次谐或超次谐分岔乃至混沌的判据. 但是在大多数情况下,经典的Melnikov方法往往只给出存在次谐周期解的结论. 产生该结果的原因被归之为在经典的Melnikov方法中只采取了一阶近似,因而高阶Melnikov方法被发展用来判断超次谐周期解的存在性. 本文对一类非自治微分动力系统进行了研究,证明了在这样一类系统中如果存在周期解则只可能是次谐周期解,超次谐周期解不可能存在,并进一步证明了在一类平面问题中所定义的旋转(R)型超次谐周期解同样不可能存在.作为该结论的一个应用,文中考察了几个典型的算例,结果表明现有的二阶Melnikov方法判断平面扰动系统是否存在超次谐周期解的结论是不恰当的,并提供了一个简单的几何上的解释.

    Abstract:In the study of the nonlinear dynamics, Melnikov functionis widely used as a criterion to check whether subharmonic orultra-subharmonic bifurcation even chaos will occur in a perturbed Hamiltonsystem. However, for the most cases, the classical Melnikov method canmerely show the existence of subharmonic periodic orbits. Such a result isattributed to that only first order approximation is adopted in theclassical Melnikov method. So higher-order Melnikov method is developed todetermine the existence of the ultra-subharmonic periodic solution. In thispaper, a class of non-autonomous differential dynamic system is studied. Itis proved that if there exists a periodic solution in such a system, thesolution can only be subharmonic, and the existence of ultra-subharmonicperiodic solution is impossible. Moreover, the nonexistence of R-typeultra-subharmonic periodic solution defined for a specified planar system isalso confirmed. As an application of above conclusions, some typicalexamples are investigated. The results demonstrate that second-orderMelnikov method used to justify the existence of ultra-subharmonic periodicorbits in a planar perturbation system may lead to a wrong conclusion. Asimple geometric explanation is also provided.

/

    返回文章
    返回
      Baidu
      map