EI、Scopus 收录
中文核心期刊
贾斌, 王振清, 李永东. I型定常扩展裂纹尖端的弹黏塑性场[J]. 力学学报, 2005, 37(4): 421-427. DOI:10.6052/0459-1879-2005-4-2004-128
引用本文: 贾斌, 王振清, 李永东. I型定常扩展裂纹尖端的弹黏塑性场[J]. 力学学报, 2005, 37(4): 421-427.DOI:10.6052/0459-1879-2005-4-2004-128
The elastic-viscoplastic field at mode I steadily propagating crack-tip[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 421-427. DOI:10.6052/0459-1879-2005-4-2004-128
Citation: The elastic-viscoplastic field at mode I steadily propagating crack-tip[J].Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 421-427.DOI:10.6052/0459-1879-2005-4-2004-128

I型定常扩展裂纹尖端的弹黏塑性场

The elastic-viscoplastic field at mode I steadily propagating crack-tip

  • 摘要:考虑材料在扩展裂纹尖端的黏性效应,假设黏性系数与塑性应变率的幂次成反比,对幂硬化材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了I型裂纹数值解的性质随各参数的变化规律. 分析表明应力和应变均具有幂奇异性,并且只有在线性硬化时,尖端场的弹、黏、塑性才可以合理匹配. 对于I型裂纹,裂尖场不含弹性卸载区. 当裂纹扩展速度趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式;如果进一步考虑硬化系数为零的极限情况,便可退化为Hui和Riedel的非线性黏弹性解.

    Abstract:The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode I crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. The quasi-static solution is recovered when the crack moving speed approaches zero, which show that the quasi-static solution is a special case of a dynamic one. If the limit case of zero hardening coefficient is further considered, the solution can be transformed to the elastic-nonlinear-viscous one of Hui and Riedel.

/

    返回文章
    返回
      Baidu
      map