EI、Scopus 收录
中文核心期刊
范存旭. 球壳轴对称弯曲问题共轭二阶挠度微分方程[J]. 力学学报, 2007, 23(5): 704-707. DOI:10.6052/0459-1879-2007-5-2006-442
引用本文: 范存旭. 球壳轴对称弯曲问题共轭二阶挠度微分方程[J]. 力学学报, 2007, 23(5): 704-707.DOI:10.6052/0459-1879-2007-5-2006-442
Cunxu Fan. Conjugate second-order deflection differential equation of global shell axial symmetrical bending problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 704-707. DOI:10.6052/0459-1879-2007-5-2006-442
Citation: Cunxu Fan. Conjugate second-order deflection differential equation of global shell axial symmetrical bending problem[J].Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 704-707.DOI:10.6052/0459-1879-2007-5-2006-442

球壳轴对称弯曲问题共轭二阶挠度微分方程

Conjugate second-order deflection differential equation of global shell axial symmetrical bending problem

  • 摘要:提出球壳轴对称弯曲问题共轭二阶挠度微分方程并给出了初等函数解.球壳微分方程是薄壳理论三大壳之一旋转壳的典型方程. 共轭二阶挠度微分方程是球壳中微分方程形式最简单的, 是人们最喜爱的挠度微分方程. 挠度微分方程满足边界条件非常简单, 使球壳的计算得到很大的简化.

    Abstract:In this paper, the conjugate second-order deflectiondifferential equation is derived for the global shell axial symmetricalbending problem, and the solution in elementary functions is obtained.Shell of revolution is one of the three basic shells in thin shell theoryand the global shell differential equation is a typical equation for shell ofrevolution. The conjugate second-order deflection differential equation is notonly the simplest global shell differential equation but also the deflectiondifferential equation most commonly used. Differential equationof deflections can satisfy the boundary conditions simply, whichsimplifies the calculation.

/

    返回文章
    返回
      Baidu
      map