EI、Scopus 收录
中文核心期刊
李焦赞 高正红. 基于几何不确定性的翼型多目标稳健优化设计[J]. 力学学报, 2011, 43(3): 611-615. DOI:10.6052/0459-1879-2011-3-lxxb2010-066
引用本文: 李焦赞 高正红. 基于几何不确定性的翼型多目标稳健优化设计[J]. 力学学报, 2011, 43(3): 611-615.DOI:10.6052/0459-1879-2011-3-lxxb2010-066
Li Jiaozan Gao Zhenghong. Multi objective optimization methodology for airfoil robust design under geometry uncertainty[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 611-615. DOI:10.6052/0459-1879-2011-3-lxxb2010-066
Citation: Li Jiaozan Gao Zhenghong. Multi objective optimization methodology for airfoil robust design under geometry uncertainty[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 611-615.DOI:10.6052/0459-1879-2011-3-lxxb2010-066

基于几何不确定性的翼型多目标稳健优化设计

Multi objective optimization methodology for airfoil robust design under geometry uncertainty

  • 摘要:提出在优化设计进程中引进基于各种不确定性波动的稳健优化设计思想, 进行多目标进化优化算法与代理模型技术在稳健优化设计中的应用研究. 提供翼型确定性优化和稳健性优化实例, 并对结果进行对比, 结果表明该稳健优化设计方法可以得到更有实际应用价值的翼型气动外形.

    Abstract:Traditionally, aerodynamic shape optimization has focusedon obtaining the best design given the requirements and flow conditions.However, the manufacturing accuracy of the optimal shape is depends on theavailable manufacturing technology and other factors, such as manufacturingcost. It is imperative that the performance of the optimal design isretained when the component shape differs from the optimal shape due tomanufacturing tolerances and normal wear and tear. These requirementsnaturally lead to the idea of robust optimal design wherein the concept ofrobustness to various perturbations is built into the design optimizationprocedure. Here we demonstrate how both multi-objective evolutionaryalgorithm and surrogate model can be used to achieve robust optimal designs.Test cases include the deterministic optimization and robust design ofairfoils, and the results were compared. It was shown that the presentrobust aerodynamic shape optimization method is a useful tool to design themore practical airfoil for air vehicles.

/

    返回文章
    返回
      Baidu
      map