EI、Scopus 收录
中文核心期刊
Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. DOI: 10.6052/0459-1879-14-139
Citation: Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. DOI: 10.6052/0459-1879-14-139

AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION

  • The process of fatigue damage accumulation is an energy dissipation process accompanied with temperature variation. Compared with the local temperature rise in fatigue process, intrinsic dissipation is a direct reflection of material energy change, is related to the material microstructure evolution more closely, and has more definite physical meaning to be taken as a fatigue indicator. Based on a one-dimensional double exponential regression of the specimen surface temperature rise, a calculation model of intrinsic dissipation is established in this paper. On this basis, an energy approach for rapid evaluation of fatigue behavior is proposed. Utilizing this energy approach, the fatigue behavior of FV520B stainless steel has been experimentally studied. The analyses and comparisons of experimental results prove the feasibilities and validities of the energy approach and calculation model.
  • loading

Catalog

    /

      Return
      Return
        Baidu
        map