THE DISTRIBUTION OF PARTICLES IN A SHOCK-INDUCED BOUNDARY LAYER OF A DUSTY GAS OVER A SOLID SURFACE
Abstract
The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied. The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into account. A method for calculating the density profile of dispersed phase near the wall is proposed and some numerical results are given. It is shown that behind the shock wave, there exists a curved thin layer where the density of particles is many times higher than the original one. This dust co...