NATURAL VIBRATION ANALYSIS OF TWO-DIMENSIONAL FLEXIBLE WING BASED ON NON-UNIFORM BEAM MODEL
Abstract
In order to improve the flight performance of the aircraft, morphing technologies are used to change aerodynamic characteristics through smooth and continuous structural deformation. Since this new concept requires changing the structural shape to obtain the best performance, its inherent dynamic characteristics will be affected and even change its aeroelastic performance. In this paper, an equivalent modelling method of the two-dimensional flexible wing with camber morphing is developed. The dynamic model of the flexible wing is established based on the hypothesis of a non-uniform beam model. The analytical solution and natural frequencies are obtained by the method of Frobenius and verified by comparison with the finite element method solution. The errors of the first four natural frequencies are within 1% and the corresponding modes are consistent. The flexible wing is prepared by 3D printing engineering plastic (ABS) and silicone rubber skin. The Young's modulus of the 3D printing material and silicone rubber are respectively measured by dynamic measurement method and tensile test. The vibration response test platform is built to carry out vibration test of the flexible wing. It is found that the fundamental frequency obtained by vibration test is consistent with the theoretical model results, and the error is less than 3% compared with the finite element method. The equivalent modelling method of a two-dimensional flexible wing is established through theoretical analysis and experimental verification. The research results will provide theoretical support for applying the flexible trailing edge structures.